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ABSTRACT
Drug and opioid overdose continues to be a leading cause of death in

the United States. Public, social, intervention, and provider-based

stigma surrounding Opioid Use Disorder (OUD) or medications

for addiction treatment (MAT) cause individuals to turn to online

resources or communities to seek knowledge and support. However,

these online platforms are known to promote harmful myths related

to OUD and MAT. Additionally, with the democratized access to

LLM-powered chatbots (e.g., ChatGPT), people are increasingly

using them to answer their day-to-day queries. This widespread

usage calls for a comprehensive evaluation of LLMs, i.e., to see if and

how LLMs propagate myths, stigma, or misconceptions on OUD. In

this position paper, we present a list of auditing approaches, open

questions, and challenges to initiate a discussion on evaluating

LLMs for OUD.
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1 INTRODUCTION
In 2021, the National Institute for Drug Abuse (NIDA) reportedmore

than 106, 000 opioid drug-involved deaths in the United States [21].

For individuals suffering from Opioid Use Disorder (OUD), sug-

gested pathways to recovery include Food and Drug Administration

(FDA) approved medications for addiction treatment (MAT) [20],

combined with peer support, and counseling/behavioral thera-

pies [30]. However, misperceptions surrounding OUD and MAT

pose as barriers to recovery. Stigma about MAT is common within

mutual help organizations and psychosocial programs [32]. Inter-

vention stigma, from people who disagree with the use of medica-

tions to treat OUD, is widespread [19]. For them, MAT is equivalent

to “trading one drugwith another”. Language used to describe addic-

tion further limits professional healthcare. For example, recognizing

opioid addiction as a “willful choice”, and not a disease, separates

OUD treatment models from the rest of the medical system [10].

Due to the presence of extensive stigma within the offline com-

munities, people with OUD often turn to non-conventional ways to
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recover – e.g., using online resources or communities to seek infor-

mation and support. People use Reddit to investigate alternative sub-

stances used for opioid use recovery [6], share their experiences [5],

and freely discuss substance use [4]. However, individuals’ attempts

at seeking information on substance (mis)use from online forums

are challenged due to the presence of inaccurate and harmful health

misinformation. A systematic review of four web-based platforms

(Twitter, Reddit, YouTube, and Drugs-Forum) revealed pronounced

online prevalence of a myth associated with MAT, i.e., “MAT is

simply replacing one drug with another”, especially on Twitter [9].

With the recent advancements in Large LanguageModels (LLMs),

easy to access LLM-powered chatbots, such as ChatGPT, have be-

come the “go-to” online resource to seek knowledge, share experi-

ences, and self-disclose [2]. They can quickly provide information,

reducing the time and effort required to research a topic manually.

In addition, people are increasingly using LLMs to co-write con-

tent, e.g., to write opinionated views on controversial topics [14],

emails, and social media posts. In the healthcare context, which

is of particular interest to us, scholars have identified the poten-

tial of LLM-powered chatbots in assisting communication between

healthcare workers and patients [1, 3], making diagnosis, and rec-

ommending tests or treatments [31]. However, it is warranted to

consider potential harms of LLMs in conjunction to their benefits.

The models are trained on datasets that are not transparent and

may contain biased information or misinformation, leading to LLMs

further reproducing those in their generated output [13]. Zack et al.

[34] found that GPT-4 produced medical diagnosis that stereotyped

certain races, ethnicities, and gender identities. LLMs were also able

to generate highly convincing and persuasive health misinforma-

tion against precautionary measures to take during COVID-19 [35].

Given the potential harms, it is essential to evaluate LLMs, es-

pecially when used in socially stigmatizing, high-stakes contexts

such as OUD, mental healthcare, or gender-related issues. Factu-

ally inaccurate information on OUD, generated by LLM-powered

chatbots, could mislead individuals during their opioid recovery

journey. For example, as shown below, GPT-4
1
generates a misin-

forming response to a question posted on the r/OpiatesRecovery

subreddit
2
. It generates a generic response stating that “detoxing

from one opioid with another can be a risky strategy” – dismissing

1
Generated using the gpt-4-0613 model, 0.0 temperature, and other parameters as

default.

2
https://www.reddit.com/r/OpiatesRecovery/

https://www.reddit.com/r/OpiatesRecovery/
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the effectiveness of all opioids, including methadone, which is an

FDA approved medication to treat OUD
3
.

Question from r/OpiatesRecovery subreddit: “I have
been hooked on tramadol for about 3 years now [...]

Can I detox from one opioid with the help of another

(e.g., oxycodone or methadone)?”

Response from GPT-4: “[...] it’s crucial to understand

that detoxing from one opioid with another can be a

risky strategy.While it might seem like you’re making

progress as you’re not experiencing withdrawal symp-

toms, you’re still feeding your body opioids, which

can lead to dependence on the new drug.”

Incorporating LLMs into a psychotherapy tool (or chatbot) could

cause genuine harm to patients with OUD – chatbots may not

posses the required empathy, understanding, and contextual knowl-

edge [29] to extend assistance. LLMs could further exacerbate mis-

conceptions and stigmatizing views on people with OUD, MAT,

or opioid addiction in general. Dissemination of such stigmatizing

views could consequentially impact and shape public knowledge,

perceptions, and attitudes toward people with OUD. LLM-informed

negative perceptions on OUD could further marginalize the com-

munity. Through this discussion, we conclude that it is important

to audit LLMs for OUD. We envision that the following approaches

could be adopted to audit LLMs in the context of OUD.

• Experimental approach: We could recruit people to use LLMs

for a reasonable amount of time to gain information related

to OUD. This could be followed by a pre-/post-treatment

analysis to understand the impact of using LLMs in the con-

text of OUD.

• Observational approach: We could recruit people who have

previously used LLMs in the context of OUD and ask them

to donate their LLM interaction data. This could be followed

by an observational analysis of the collected historical data

(e.g., LLM-based chat or search user interactions).

• Simulation-based approach:We could create “agents” or “pro-

totypical personas” using prompt-engineering techniques

to simulate potential user-LLM interactions in the context

of OUD (e.g., synthetic agents seeking support during opi-

oid use recovery or relapse). This could be followed by a

thorough analysis of the simulated interactions.

2 RELATEDWORK
2.1 Stigma, Myths, and Misconceptions around

OUD
OUD is a highly stigmatized issue. There is a widespread misconcep-

tion that opioid addiction is a “willful choice”, and not a disease [10].

Similar such notions pose as barriers to harm reduction strategies,

e.g., MAT. First responders were found to hold negative attitudes

toward the use of MAT [18]; they propagated provider-based stigma

by stating that “[MAT] puts more drugs on the streets”. A nationally

representative web-based survey revealed pronounced presence

of public/social stigma around OUD – respondents expressed that

3
https://www.samhsa.gov/medications-substance-use-disorders/medications-

counseling-related-conditions/methadone

people with OUD are to blame for their own condition, lack self-

discipline, and should be socially distanced [17]. Scholars have also

made efforts to uncover OUD-related stigma in mass and social

media. A qualitative study of the Indian online news media revealed

the presence of derogatory language (e.g., the usage of “addicts”,

“jobless”, or “junkies”) when describing people with substance use

disorder [11]. ElSherief et al. [9] identified the online presence of a

leading myth surrounding MAT, i.e., “MAT is simply replacing one

drug with another”. Drawing knowledge from public health expert

annotations, authors found the lowest prevalence of the said myth

on web-based health communities such as Reddit and Drugs-Forum,

and the highest on Twitter. A deductive content analysis of 259 Red-

dit posts characterized the major sources of OUD-related stigma as

public (including family members), provider-based (healthcare pro-

fessionals), structural (workplace, law enforcement, and self-help

groups), and self [33]. Given how people are using LLM-powered

chatbots or search engines for their everyday queries, it becomes

essential to understand if and how LLMs propagate myths, stigma,

or misconceptions related to OUD.

2.2 Evaluating LLMs for Healthcare
With the release of ChatGPT [23], researchers have begun to dis-

cuss the potential of and evaluate LLMs for different healthcare

applications. By comparing human- and LLM-generated COVID-19

health misinformation, Zhou et al. [35] found LLM-generated mis-

information to contain a persuasive tone and exaggerated details. In

a careful evaluation of 4 LLMs – Bard, Claude, ChatGPT, and GPT4

– Omiye et al. [22] found the perpetuation of debunked and race-

based medicine. On similar lines, Zack et al. [34] evaluated GPT-4

produced medical diagnosis using deductive content analysis. This

uncovered medical stereotypes based on race, ethnicity, and gender.

De Choudhury et al. [8] adopted an ecological framework to assess

the opportunities and risks posed by LLMs in the context of digital

mental health. In a cross-sectional study [3], researchers asked li-

censed healthcare professionals to evaluate ChatGPT responses for

randomly sampled questions on the subreddit r/AskDocs. ChatGPT

responses were rated higher for both quality and empathy com-

pared to physician responses. Scholars have also stressed towards

the creation of specialized audit models for LLMs in healthcare [26].

One such discussed framework is “The Governance Model for AI in

Healthcare (GMAIH)”, which consists of four components: fairness,

transparency, trustworthiness, and accountability [27]. Singhal et al.

[28] evaluated LLMs for clinical knowledge. The authors introduced

HealthSearchQA, a dataset consisting of commonly searched con-

sumer medical questions. Using this dataset, along with others, they

then introduced a framework for physician and lay user evalua-

tion to assess LLM-generated responses across multiple axes, e.g.,

reading comprehension, recall of relevant knowledge, manipula-

tion of knowledge, relevance, and helpfulness. Recently, Jin et al.

[16] introduced XlingEval for assessing LLM responses to human-

authored health-related questions via three criteria: correctness,

consistency, and verifiability. They found pronounced disparity

in LLM-generated responses across four major global languages:

English, Spanish, Chinese, and Hindi. Despite these efforts, there is

still a need to evaluate LLMs specifically for OUD. The nuanced and

https://www.samhsa.gov/medications-substance-use-disorders/medications-counseling-related-conditions/methadone
https://www.samhsa.gov/medications-substance-use-disorders/medications-counseling-related-conditions/methadone
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sensitive nature of the topic warrants dedicated efforts to assess

the applicability of LLMs.

3 APPROACHES TO AUDIT LLMS
Prior works often adopt an observational approach to audit LLMs [12,

16, 28], which involves conducting a post-hoc evaluation of LLM in-

teraction data, e.g., historical LLM-powered chatbot interactions, do-

nated by users or carefully curated by scholars. The LLM-generated

data is then evaluated using metrics, such as truthfulness, informa-

tion quality, or logical cohesion [12], depending on the context. For

example, Jin et al. [16] used three metrics – correctness, consistency,

and verifiability – to evaluate LLM-generated responses to human-

authored health-related questions. On similar lines, we envision an

observational audit to assess LLMs for OUD via metrics including,

but not limited to, those listed in Section 4, e.g., presence of stigma,

information credibility, and empathy. Though observational audits

work with high-quality first-person interaction data, the historical

interactions could themselves be influenced by external factors –

leading to biases in our findings. Additionally, researchers make

use of an experimental approach to audit LLMs. In this, participants

are recruited to engage with LLMs for a prolonged duration. This

is followed by pre-/post-treatment analysis, user interviews, or

participatory engagement sessions. Jakesch et al. [15] conducted

a large-scale experimental study to evaluate how LLM-powered

writing assistants impact people’s perception on contested issues.

More recently, Rakova [25] evaluated “Zuzi”, an LLM-based chatbot

that provides legal assistance and social support to survivors of

gender-based violence (GBV) in South Africa. Following a scenario-

based approach, participants identified strengths and weaknesses of

the chatbot. Though such experimental audits provide high-quality

data by collecting first-person interaction experiences, they can po-

tentially risk exposure of harmful information to an already vulner-

able population. Lastly, existing work has used a simulation-based
approach to evaluate LLMs’ capabilities [7, 24, 36]. This involves

the creation of “agents” or “synthetic personas”, using prompt-

engineering techniques, to simulate or mimic real-world user-LLM

interactions. The synthetic interactions are then carefully examined

to assess LLMs. For example, Zhou et al. [36] created SOTOPIA, a
simulation-based interactive environment to evaluate LLMs’ so-

cial intelligence. Though this approach does not pose any direct

threat to people, it surfaces concerns on how close the simulated

interactions are to actual real-world interactions.

4 QUESTIONS TO ANSWER WHILE AUDITING
LLMS FOR OUD

Based on our discussion in Sections 1 and 2, following are some

potential open questions that could be answered while auditing

LLMs for OUD:

• Stigma: Do LLMs exacerbate or abate stigma related to OUD?

Can LLM-generated responses surface new unidentified stig-

matized perceptions related to OUD?

• Credibility: Do LLMs spread misinformation or misconcep-

tions related to OUD? If yes, do LLMs use persuasive framing,

or provide reasoning to justify such misinformation? Con-

trastively, do LLMs counter or correct misinformation related

to OUD? Or, how can we teach LLMs to self-correct in case

they generate misinformative responses?

• Empathy: How capable are LLMs in providing genuine sup-

port to people with OUD? Do they generate trustworthy,

empathetic responses containing shared-lived experiences?

• OUD Recovery support: What are the knowledge-sharing ca-

pabilities of LLMs in terms of recovery or treatment support

provision for OUD? Do LLMs provide recommendations sit-

uated in medically-approved treatments for OUD?

5 BOTTLENECKS WHILE AUDITING LLMS
FOR OUD

Here, we list some challenges researchers may face when evaluating

LLMs for OUD:

• Given that OUD is a high-stakes sensitive issue, it is essential

to gain the trust of people with OUD to recruit them to

conduct experimental or observational audits for LLMs.

• The nuanced context of OUD warrants human-centered

knowledge from domain experts to build effective LLM eval-

uation frameworks. We would have to come up with OUD-

centric evaluation metrics to assess the quality of LLM-

generated responses. For example, dedicated efforts would

be needed to evaluate the level of OUD-related stigma in

LLM-generated responses.

• The LLM landscape is rapidly evolving. For instance, the

response generated by ChatGPT today may not be repro-

ducible in the future. Consequently, frameworks adopted to

audit LLMs should be flexible enough to adapt to the changes

and not assume that the underlying system would remain

static.
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