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a b s t r a c t

Many classes of network growth models have been proposed in the literature for
capturing real-world complex networks. Existing research primarily focuses on global
characteristics of these models, e.g., degree distribution. We aim to shift the focus
towards studying the network growth dynamics from the perspective of individual
nodes. In this paper, we study how a metric for node influence in network growth
models behaves over time as the network evolves. This metric, which we call node
visibility, captures the probability of the node to form new connections. First, we conduct
an investigation on three popular network growth models — preferential attachment,
additive, and multiplicative fitness models; and primarily look into the ‘‘influential
nodes’’ or ‘‘leaders’’ to understand how their visibility evolves over time. Subsequently,
we consider a generic fitness model and observe that the multiplicative model strikes
a balance between allowing influential nodes to maintain their visibility, while at the
same time making it possible for new nodes to gain visibility in the network. Finally,
we observe that a spatial growth model with multiplicative fitness can curtail the global
reach of influential nodes, thereby allowing the emergence of a multiplicity of ‘‘local
leaders" in the network.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, complex networks have been used to model real-world systems across different domains
anging from social, biological, information, and technological systems [1,2]. Investigating the behavior of influential
ntities or leaders in these real-world networks would help us understand how they are able to gather and maintain
rominence over time. For instance, influential papers in citation networks continue to acquire new citations every
ear [3,4]. Likewise, celebrities in online social networks keep increasing their follower count over time. These influential
ntities act as potential spreaders of information in networks. Therefore, keeping a track of their characteristics in an
volving network could have significance in applications ranging from viral marketing and target advertisement to rumor
nd epidemic control, and protection from spam attacks [5–7]. To understand and model the dynamics of how a leader
ode maintains its influence over time, one needs to study the temporal behavior of nodes in a network.
In this paper, we introduce a notion, called visibility of a node which is defined as the probability of the node to form

ew connections in a growing network. For instance, in a preferential attachment model [8,9], the visibility of a node
s proportional to its degree, and inversely proportional to the number of edges in the network. An essential aspect
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f the study is to investigate the visibility profile of a node which characterizes the temporal evolution of the node’s
nfluence as the network grows. We argue that studying the visibility profile of nodes leads to a better understanding
f network evolution due to attachment dynamics, which might not be possible to obtain by simply analyzing global
etwork properties such as degree distribution or local node-centric properties such as degree, clustering coefficient, etc.
imilar to node persistence over time studied in [10], our approach allows to make headway into this understanding by
haracterizing the visibility behavior of leaders in the network. While the framework is applicable to arbitrary nodes as
ell, it is more interesting to first understand the leaders’ behavior. Chakraborty et al. [4] argued that the growth of the
egree of a node (its visibility) in a citation network follows one of the five patterns — early rise, late rise, frequent rise,
teady rise and steady drop. In a subsequent study [11], they also concluded that highly-cited papers and authors (leaders)
ollow steady rising pattern. However, it was not clear whether existing network growth models are able to describe such
atterns particularly for leader nodes [12]. This motivates us to study the temporal evolution of the visibility of nodes, in
articular leaders in networks generated by different network growth models.
We study the visibility of influential nodes1 in the graphs simulated by the following network growth models.

arabási–Albert (BA) model [9], also known as the preferential attachment model, was able to explain power law behavior
n real-world networks using the idea of network growth and the ‘‘rich-get-richer" phenomenon. However, the BA model
ould only capture the ‘‘old-get-rich" phenomenon or the ‘‘first-mover-advantage" whereby older nodes increase their
onnectivity and become dominant at the expense of younger nodes in the network. It does not take into account the
ompetitive characteristics of a node that help them flourish in a very short period of time [13,14]; for instance, in
itation networks a few research papers are able to gain lot of citations within a short span of time [15]. Using this as a
otivation, Bianconi and Barabási [16,17] introduced a new class of network growth models in which the incoming nodes

orm connections based on inherent characteristics of nodes such as novelty, usefulness, etc., captured through a fitness
alue [18–23]. This was inspired by the ‘‘fit-get-richer" phenomenon observed in real-world networks [16]. Following
his, Ergun and Rodgers [24] analyzed the degree distribution of network growth models with an attachment mechanism
ombining the degree and fitness information of nodes in an additive and multiplicative manner. While the additive model
as found to exhibit a power law behavior similar to the BA model, the multiplicative model exhibited multiscaling, i.e.,
he power law behavior with parameter dependent on the fitness at a particular site.

There are several real-world networks in which the aspect of space plays an important role to understand dynamics
f network evolution. For instance, in the biological domain the regions in brain that are spatially closer have a higher
robability of being connected as compared to the far-off regions [25]. Similar significance of space can also be observed
n online social networks capturing spatial features [26,27], transportation networks [28], and communication networks.
o model networks incorporating spatial features, the class of spatial network models has been proposed. A basic spatial
odel incorporating notions of preferential and spatial attachment was proposed by Yook et al. [29] to capture underlying
echanisms driving the evolution of the Internet topology. Subsequently, Kaiser et al. [30] analyzed a spatial growth
odel where the edge connection probability decreases with node distance either in an exponential or a power-law
anner to explain multiple, interconnected clusters that emerge in real-world networks. Barthélemy [31] noted that the
patial growth model with exponential decay with distance exhibited power law behavior with cutoff at high degree
alues. This was argued to have been observed due to distance effects limiting the choice of available connections.
urthermore, clustering, a phenomenon that does not occur in the BA or the fitness models, was observed in spatial models
ue to the fact that nodes that are closer in space, are more likely to be connected among themselves. See Barthélemy [32]
or a comprehensive study on spatial networks. Recently, we proposed a new spatial growth model [12] that was better
ble to capture the five growth patterns presented in [4], compared to the preferential attachment model and its variants
i.e., additive and multiplicative fitness models [19,33]).

Defining the notion of visibility as a node metric in the context of network growth models is a key contribution of
he present work. While the metric had been defined for the BA and the fitness models in our previous works [12,34],
e extend the definition to spatial models as well. Defining a local metric that captures the visibility of a node gives
s the tools and vocabulary to study their temporal behavior and how their level of influence might change over time.
n contrast to existing literature that has mostly focused on global network-wide behavior in the large graph limit, our
rimary interest has been the local behavior of influential nodes over time. In the context of specific network models,
e also describe conditions under which influential nodes might increase or decrease their visibility. Comparing and
ontrasting different network models and studying how influential nodes behave in each is a novel aspect of our work.
We extend our previous studies [12,34] and address the following problem statement: Given an influential node with

igh visibility at a certain point in time, how would its visibility evolve over time? This in itself is a novel and an interesting
uestion in the context of network growth models. We investigate across three popular and diverse network growth
odels — Barabási–Albert (BA) model, (additive, multiplicative, and general) fitness based model and spatial models. One
f the primary theoretical findings that we continue to build on from our previous work [34] is that leaders are able to gain
ore visibility in the multiplicative fitness model setting as compared to the BA and additive fitness models. Although,

he ‘‘rich-get-richer" phenomenon [9] holds for both the BA and the AF models at the global scale in the large graph
imit, ‘‘rich" or influential nodes at any given point in time are noted to lose global influence over time since the number

1 We use ‘‘leaders’’ and ‘‘influential nodes’’ interchangeably to denote high-degree and/or high-fitness nodes that can keep attracting new edges
over long periods of time.
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f connections they attract cannot keep pace with the network growth. On the other hand, in the multiplicative fitness
odel, the influential nodes are able to increase their visibility over time, given that their fitness value remains high in
omparison to the rest of the network; while, the visibility values always decrease over time for the BA and additive
itness models (see Section 3 for details). In Section 3.1, we study a general framework of fitness models and observe that
superlinear attachment rule based on degree and fitness would lead to highly dominant nodes and make it exceedingly
ifficult for new nodes to gain influence in the network. While this observation has relationship to the ‘‘winner-takes-
ll" [17,35] behavior reported in the context of multiplicative and superlinear models in the large graph limit, it must be
oted that in the multiplicative model, a ‘‘winner" could be overtaken by a new node, which gets exceedingly difficult
or the superlinear model. Experimental analysis provided in Section 4 supports our theoretical analysis that suggest
ultiplicative fitness models best explain the prolonged influence of leader nodes in certain real-world networks, while
t the same time allowing new high fitness nodes to gain influence over time. However, we observe that multiplicative
itness models do not allow multiple influential nodes to exist at the same time. In Section 5, we investigate relationship
etween several concepts of visibility for spatial models, and give theoretical insights on how spatial growth models can
llow a multiplicity of leaders to coexist while describing conditions under which local leaders could maintain or grow
heir influence; Section 6 provides experimental justifications for the same.

Reproducibility: To encourage reproducible research, the codes are publicly available at https://github.com/mittalshravika/
etwork-Growth-Models.

. Network growth models

Following our previous work [34], here we set up the notations and problem definition. Consider the following
equence of graphs {Gt , t = 0, 1, . . .}, where Gt = (Vt ,Et ), with Vt and Et being the set of nodes and edges in Gt
respectively. In a network growth model, we have Vt ⊂ Vt+1 and Et ⊆ Et+1 for every t = 0, 1, . . .. In other words, new
nodes arrive at every time step t , and form connections with existing nodes, thus adding to the edge set of the previous
graph Gt−1. For purposes of simplicity, here we consider the basic model where a single node enters at any time step t ,
and forms a connection with one node in the existing graph Gt−1. Therefore, we can label the incoming node by the time
index of its entry to the network, which leads to Vt = {0, 1, . . . , t} for t = 0, 1, . . .. Note that all our results can be easily
extended to more general scenarios where multiple nodes can enter the network and incoming nodes can form multiple
connections. At time t , let the degree of the node i in Vt be denoted by Dt (i). Also, let the rv St+1 denote the node with
which an incoming node t + 1 connects.

Barabási–Albert (BA) model: In the preferential attachment mechanism [9], new nodes connect preferentially to
existing nodes with higher degree. Let pBA(t + 1) = (pBAi (t + 1), i ∈ Vt ) be the pmf with which the new node indexed
as t + 1 connects with the existing graph Gt , i.e., pBAi (t + 1) is the probability with which node t + 1 connects with an
existing node i. This is given by:

pBAi (t + 1) = P [St+1 = i | Gt ] =
Dt (i)∑
j∈Vt Dt (j)

, i ∈ Vt . (1)

Note that we term node i’s visibility in the graph Gt by pBAi (t + 1).
Fitness based attachment rules: In fitness based models [16,24,36], every node is assumed to have a fitness value

ndependently drawn from a distribution, and new nodes connect preferentially on the basis of the fitness and degree
alues of the existing nodes. We describe multiple ways in which such an attachment could occur.
Assume a sequence of i.i.d. fitness rvs (ξ, ξi, i = 0, 1, . . .) with ξi denoting the fitness value of node i. A generic fitness

odel can be described by the following attachment rule

pGFi (t + 1) =
g(ξi,Dt (i))∑
j∈Vt g(ξj,Dt (j))

, i ∈ Vt , (2)

for an attachment function g : R×R → R which determines the relative importance of the fitness and degree values. In
the additive fitness model, new nodes connect preferentially to existing nodes having a higher sum of degree and fitness
value. For t = 0, 1, . . ., let the pmf delineating formation of new connections at time t + 1 be given by pAF (t + 1), where

pAFi (t + 1) =
ξi + Dt (i)∑

j∈Vt (ξj + Dt (j))
, i ∈ Vt . (3)

Similarly, the attachment rule for multiplicative fitness (MF) model is given by

pMF
i (t + 1) =

ξi · Dt (i)∑
j∈Vt ξj · Dt (j)

, i ∈ Vt . (4)

Therefore, the visibilities of node i in graph Gt are given by pAFi (t + 1) and pMF
i (t + 1) for the additive and multiplicative

fitness models, respectively. Note that the influential nodes as described in Section 1 relate to nodes having high visibility
as defined for the particular network growth model in question. On the other hand, ‘‘hubs" are referred to high degree
nodes. Note that nodes could be influential or highly visible in the fitness models even before they become hubs. Likewise,
hubs that were influential previously could be less visible at any point in time.
3
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Spatial attachment rules: In spatial models [29,30,37], every node is assumed to have a location vector drawn from
a distribution over a location space A. Assume a sequence of i.i.d. location rvs (χ, χi, i = 0, 1, . . .) and i.i.d. fitness
rvs (ξ, ξi, i = 0, 1, . . .) with χi and ξi denoting the location and fitness values of node i respectively. A generic spatial
attachment model can be given by the following attachment rule

pATi (t + 1) =
h(χi, χt+1; ξi,Di(t))∑
j∈Vt h(χj, χt+1; ξj,Dj(t))

. (5)

The attachment probability now depends on the location vector of the new node χt+1. This is different from the models
escribed previously. Therefore, we could have multiple definitions of visibility. A global variant of visibility is given below

pglobali (t + 1) = Eχ

[
h(χi, χ; ξi,Di(t))∑
j∈Vt h(χj, χ; ξj,Dj(t))

]
, (6)

while a local version is given as

plocali (t + 1) =
h(χi, χi; ξi,Di(t))∑
j∈Vt h(χj, χi; ξj,Dj(t))

, (7)

where h : A × A × R × N → R. We find it useful to consider the following separable form of attachment function

h(χ1, χ2; ξ1,D1) = α(χ1, χ2)β(ξ1,D1), χ1, χ2 ∈ A, (8)

where α : A×A → R and β : R×N → R. While the notion of global visibility models the overall attractivity of a node in
the entire attribute space, the local visibility considers only its attractivity from the local neighborhood in the attribute
space of a node. This model allows for nodes whose global attractivity is low, with their local attractivity being high.

3. Analytical results on node visibility – BA and fitness models

In this section, we study and compare the evolution of visibility of a node over time for the BA model and two
fitness models, namely the additive and multiplicative fitness models. Results stated in Theorem 3.1 have appeared in
our previous work (Lemma 2, [34]). The following theorem describes the change in visibility with time for the three
growth models.

First, we introduce some notation: Define Ξt =
∑

i∈Vt ξi and ψt =
∑

i∈Vt ξiDt (i), for t = 0, 1, . . .. For any event E , the
indicator function 1 [E] = 1, when the event is true, and 1 [E] = 0 when the event does not hold.

Theorem 3.1. For every t = 0, 1, . . ., and i in Vt−1: Let Gt−1 be the graph at time t − 1, we have

(i)

E
[
pBAi (t + 1) − pBAi (t) | Gt−1

]
= −

Dt−1(i)
4t(t − 1)

, (9)

(ii)

E
[
pAFi (t + 1) − pAFi (t) | Gt−1, ξt

]
= −

(ξi + Dt−1(i)) (ξt + 1)
(Ξt−1 + 2(t − 1)) (Ξt + 2t)

, (10)

(iii)

E
[
pMF
i (t + 1) − pMF

i (t) | Gt−1, ξt
]
≳ ξiDt−1(i)

∑
j̸=i ξjDt (j)

[
ξi − ξt − ξj

]
ψ2

t−1(ψt−1 + ξi + ξt )
. (11)

roof. Fix t = 0, 1, . . ., and i in Vt .
Preferential Attachment model: The difference in the visibility of node i in the BA model between time t + 1 and t

s given as

pBAi (t + 1) − pBAi (t) =
Dt (i)
2t

−
Dt−1(i)
2(t − 1)

=
Dt−1(i) + 1 [St = i]

2t
−

Dt−1(i)
2(t − 1)

. (12)

he above follows by noting that the sum of degree rvs Dt (i) for all the nodes in the vertex set Vt equals 2t . Furthermore,
y noting that when looking at the expected difference in visibility conditioned on the graph at time t − 1, St is the only

random variable in (12), we obtain

E
[
pBAi (t + 1) − pBAi (t) | Gt−1

]
=

Dt−1(i) + P [St = i | Gt−1]
2t

−
Dt−1(i)
2(t − 1)

(13)

nd (9) follows.
4
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Additive Fitness model: Similarly in the additive fitness model, the difference in the visibility of node i can be written
as

pAFi (t + 1) − pAFi (t) =
ξi + Dt (i)∑

j∈Vt (ξj + Dt (j))
−

ξi + Dt−1(i)∑
j∈Vt−1

(ξj + Dt−1(j))

=
ξi + Dt−1(i) + 1 [St = i]

Ξt−1 + ξt + 2t
−

ξi + Dt−1(i)
Ξt−1 + 2(t − 1)

. (14)

aking expectation on both sides conditioned on Gt−1 and ξt leads to the result

E
[
pAFi (t + 1) − pAFi (t) | Gt−1, ξt

]
= −

(ξi + Dt−1(i)) (ξt + 1)
(Ξt−1 + 2(t − 1)) (Ξt + 2t)

. (15)

bserve that for large t , by Strong Law of Large Numbers, Ξt can be approximated as tE [ξ ]. Using this, we obtain for
large t ,

E
[
pAFi (t + 1) − pAFi (t) | Gt−1, ξt

]
∼ −

(ξi + Dt−1(i)) (ξt + 1)
t(t − 1) (2 + E [ξ ])2

. (16)

Multiplicative Fitness model: The difference in the visibility of node i can be written for the multiplicative model as
follows

pMF
i (t + 1) − pMF

i (t) =
ξiDt (i)∑
j∈Vt ξjDt (j)

−
ξiDt−1(i)∑

j∈Vt−1
ξjDt−1(j)

=
ξi [Dt−1(i) + 1 [St = i]]

ψt−1 + ξSt + ξt
−
ξiDt−1(i)
ψt−1

. (17)

urthermore, we lower bound the expected change in visibility as follows

E
[
pMF
i (t + 1) − pMF

i (t) | Gt−1, ξt
]

(18)

= ξi

[
Dt−1(i) + 1
ψt−1 + ξi + ξt

−
Dt−1(i)
ψt−1

]
P [St = i | Gt−1, ξt ] + ξi

∑
ℓ̸=i

[
Dt−1(i)

ψt−1 + ξℓ + ξt
−

Dt−1(i)
ψt−1

]
P [St = ℓ | Gt−1, ξt ] (19)

≈ ξi

[
ψt−1P [St = i | Gt−1, ξt ]
ψt−1 (ψt−1 + ξi + ξt)

−
Dt−1(i)
ψt−1

×

[∑
ℓ̸=i

P [St = ℓ | Gt−1, ξt ] ·
ξℓ + ξt

ψt−1 + ξℓ + ξt

]]
(20)

≥ ξi

[
ξiDt−1(i)

ψt−1 (ψt−1 + ξi + ξt)
−

Dt−1(i)
ψt−1

·

∑
ℓ̸=i ξℓDt−1(ℓ)(ξℓ + ξt )

ψ2
t−1

]
≃ ξiDt−1(i)

[
ξiψt−1 −

∑
ℓ̸=i ξℓDt−1(ℓ)(ξℓ + ξt )

ψ2
t−1(ψt−1 + ξi + ξt )

]
, (21)

and the result follows. ■

The approximation in Eq. (21) holds when ψt−1 ≫ (ξi + ξt ), which is expected to be true for sufficiently large values
of t.

We observe from (12) that a node’s visibility increases if it forms a new edge connection in the BA model. However,
it is also evident from Theorem 3.1 that the visibility of the node decreases in expectation, in a manner that is directly
proportional to its degree Dt−1(i). This can be understood from the fact that higher degree nodes in the network have
higher visibility values as a result of which, their decrease in visibility would be more as compared to nodes that have
lower visibility values. This also concurs with previous results on the growth of node degrees in BA models. Barabási and
Albert [9] noted that the degree of node k at time t behaves as Dt (k) ∼

( t
k

) 1
2 . This implies that the visibility of node k at

ime t , Dt (k)
2t ∼

1
2
√
k

1
√
t
. Note that, one can also derive the expected reduction in node visibility from this result as stated in

(9) of Theorem 3.1. Furthermore, we have dDt (k)
dt ∼

Dt (k)
2t , which explains the ‘‘rich-get-richer" phenomenon where higher

egree nodes get connections at a larger rate compared to other nodes. Nevertheless, even for high degree nodes, the rate
f degree increase does reduce over time. While older nodes do achieve high degree over time, our results indicate that
t becomes progressively more difficult to add new connections that keeps pace with the growth of the network.

In the additive fitness model, we can infer from (14) that a node’s visibility increases when it forms a new edge,
rovided Ξt−1 + 2(t − 1) > (ξt + 2)[ξi + Dt−1(i)]. This condition is expected to hold for large values of t , unless the

fitness value ξt , or ξi, or both, are very large. Similar to the BA model, node visibility decreases in expectation, with the
magnitude of decrease being directly proportional to the sum of degree and fitness values, and the fitness value of the
new incoming node ξt . For large t , (16) shows that the additive fitness model behaves very similar to the BA model. This
is supported by the result from Ergun and Rodgers [24] that the degree distribution of the AF model is also power law
with parameter 2 + E [ξ ].
5
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In contrast with the above, we can see from (11) that in expectation, for the MF model, the nodes are able to increase
their visibility over time, given that their fitness value remains large with respect to the network. In addition to this, the
expected change in visibility directly depends on the product of fitness and the present degree of the node, boosting the
visibility of a leader much more as compared to the BA and additive fitness models. This suggests that the MF model is
fundamentally very different from the BA model, and even the AF model. The difference in degree distribution was noted
in [24], where the authors observed that the MF model gives rise to a multiscaling behavior [24], i.e., the fraction of nodes
with a certain degree is dependent on the degree and the fitness value. The result in [24] indicates that high fitness nodes
show power law behavior with a lower exponent, i.e., heavier tail, compared to nodes with low fitness. While previous
works have looked at the degree statistics at a network-wide scale in the large graph limit, we investigate the properties
from the perspective of individual nodes.

Note that we derive results for change in visibility values over a single time step. The results can be easily generalized
to any fixed number of time steps.

3.1. Node visibility over time — General fitness model

We study the change in node visibility over time for a general fitness model described in (2). For ease of notation, we
define Γt =

∑
i∈Vt g(ξi,Dt (i)) and ∆

g
t,i = g(ξi,Dt−1(i) + 1) − g(ξi,Dt−1(i)) for i in Vt and t = 1, 2, . . ..

Theorem 3.2. For every t = 0, 1, . . ., and i in Vt−1: Let Gt−1 be the graph at time t − 1, we have

E
[
pGFi (t + 1) − pGFi (t) | Gt−1, ξt

]
≃

(
g(ξi,Dt−1(i))

Γ 2
t−1

)[
g(ξi,Dt−1(i))

Γt−1
·
(
∆

g
t,i − g(ξt , 1)

)
+

∑
k̸=i

(
g(ξk,Dt−1(k))

Γt−1

) (
∆

g
t,i −∆

g
t,k − g(ξt , 1)

)]
. (22)

roof. The difference in the visibility of node i can be written as follows

pGFi (t + 1) − pGFi (t) = E
[

g(ξi,Dt−1(i) + 1 [St = i])∑
j∈Vt g(ξj,Dt−1(j) + 1 [St = j])

−
g(ξi,Dt−1(i))∑

j∈Vt−1
g(ξj,Dt−1(j))

]
. (23)

e further introduce the following notation for k in Vt , Ωt,k = 1 [St = k].

pGFi (t + 1) − pGFi (t)

= Ωt,i

[
g(ξi,Dt−1(i) + 1)

Γt−1 +∆
g
t,i + g(ξt , 1)

−
g(ξi,Dt−1(i))

Γt−1

]
+

∑
k̸=i

Ωt,k

[
g(ξi,Dt−1(i))

Γt−1 +∆
g
t,k + g(ξt , 1)

−
g(ξi,Dt−1(i))

Γt−1

]
.

Furthermore, we introduce the following shorthand, ĝt,i = g(ξi,Dt−1(i)) and continue from above.

pGFi (t + 1) − pGFi (t)

= Ωt,i

⎡⎣∑ j̸=i
j∈Vt−1

ĝt,j∆
g
t,i − g(ξt , 1)ĝt,i

Γt−1
(
Γt−1 +∆

g
t,i + g(ξt , 1)

)
⎤⎦+

∑
k̸=i

Ωt,k

[
−ĝt,i∆

g
t,k − g(ξt , 1)ĝt,i

Γt−1
(
Γt−1 +∆

g
t,k + g(ξt , 1)

)] . (24)

sing expression (24), we approximate the expected change in visibility for sufficiently large values of t , as follows

E
[
pGFi (t + 1) − pGFi (t) | Gt−1, ξt

]
≃ P [St = i | Gt−1, ξt ]

⎡⎢⎢⎣
(∑

j̸=i
j∈Vt−1

ĝt,j∆
g
t,i

)
− g(ξt , 1)ĝt,i

Γ 2
t−1

⎤⎥⎥⎦−

∑
k̸=i

P [St = k | Gt−1, ξt ]

[
ĝt,i∆

g
t,k

Γ 2
t−1

+
g(ξt , 1)ĝt,i
Γ 2
t−1

]
,

(25)

nd on substituting the expressions for {P [St = ℓ | Gt−1, ξt ] , ℓ ∈ Vt−1}, we obtain

≃
ĝt,i∆

g
t,i

Γ 2
t−1

− ĝt,i
∑
k̸=i

ĝt,k
Γt−1

∆
g
t,k

Γ 2
t−1

−
g(ξt , 1)ĝt,i
Γ 2
t−1

=

(
ĝt,i
Γ 2
t−1

)⎡⎣∆g
t,i −

∑ ĝt,k
Γt−1

∆
g
t,k − g(ξt , 1)

⎤⎦

k̸=i

6
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=

(
ĝt,i
Γ 2
t−1

)[(
ĝt,i
Γt−1

) (
∆

g
t,i − g(ξt , 1)

)
+

∑
k̸=i

(
ĝt,k
Γt−1

) (
∆

g
t,i −∆

g
t,k − g(ξt , 1)

)]
. ■

The approximations hold when

Γt−1 ≫ ∆
g
t,k + g(ξt , 1),

and ∑
j̸=i

j∈Vt−1
ĝt,j

Γt−1
≈ 1.

he above conditions will hold for sufficiently large values of t . The expected change in visibility will be positive if

∆
g
t,i ≥ ∆

g
t,k, k ̸= i, k ∈ Vt−1,

and ∆g
t,i ≥ g(ξt , 1). While this is a sufficient condition, the expected change in visibility will be positive if node i has

significantly large visibility in the network. Observe that for the BA and additive fitness models, ∆g
t,i = 1. While for the

BA model, the approximation is too crude, we obtain a decrease in expected visibility for the additive model from (22).
For the MF model,

∆
g
t,i = ξi(Dt−1(i) + 1) − ξiDt−1(i) = ξi.

Therefore, ∆g
t,i will be greater for nodes with higher fitness values. However, an incoming node with a high fitness value

can lead to a decrease in the expected visibility of an influential node. This agrees with our findings in Theorem 3.1. For
attachment functions which combine the fitness and degree information in a superlinear fashion, influential nodes can
retain greater visibility for longer periods of time while being protected from decrease in visibility due to new nodes with
high fitness values. For superlinear attachment rules, i.e., g(ξi,Dt (i)) = (ξiDt (i))α , with α > 1, we have

∆
g
t,i = (ξi(Dt−1(i) + 1))α − (ξiDt−1(i))α

= ξαi Dt−1(i)α
([

1 +
1

Dt−1(i)

]α
− 1

)
≈ αξαi Dt−1(i)α−1, (26)

here the approximation is achieved by Taylor series, which will be accurate for large values of Dt−1(i).
Observe that ∆g

t,i is now a function of both the fitness and degree values. In such superlinear attachment rules, new
odes with high fitness values cannot lead to a decrease in expected visibility for influential nodes because of their low
nitial degree. Also, nodes with low degree and high fitness values could experience a decrease in their visibility because
nly nodes with significantly large fitness and degree values can increase their visibility in an expected sense, which is
ot the case for the multiplicative model. This would lead to a great difficulty for new nodes with high fitness values to
ttain visibility in the network. Furthermore, it will become progressively more difficult for new nodes to become visible
n the network. In the experimental section, we will consider the special case of the quadratic scaling (α = 2). In this
etting, we have ∆g

t,i = ξ 2i (2Dt (i) + 1), which is very close to the expression (26) with α = 2.
Thus with superlinear attachment rule, we expect a ‘‘winner-takes-all" behavior where an influential node will keep

getting most of the connections over time. This is in accordance with previous result [35] that observed this behavior
in the large graph limit with superlinear scaling on the degree information alone. However, in the MF model, while
the ‘‘winner-takes-all" and the ‘‘fit-get-rich" behaviors are also observed [16] in the large graph limit, it is noted that a
‘‘winner" at a given point in time will not hinder the visibility growth of a newly introduced node with high fitness, and
therefore can be potentially overtaken in the future by that node. This is demonstrated further through simulations in
Section 4.

4. Experimental results on node visibility — Fitness models

In order to illustrate Theorems 3.1 and 3.2 and depict the change in visibility of influential nodes, we carry out two
sets of simulation experiments. We compare how the visibility of leaders or influential nodes change over time in the
Barabasi–Albert (BA), additive fitness (AF), multiplicative fitness (MF) and general fitness (GF) models. Throughout, the
fitness variable ξ is taken to be Pareto distributed with parameter αp having the following probability distribution,

p(ξ ) = αp/ξ
αp+1, ξ ≥ 1. (27)

While our theoretical analysis is not dependent on the choice of fitness distribution, for the purpose of experimental study
we choose power-law distributed fitnesses, because power-law distribution appear in many contexts when individuals
are ranked according to certain feature of interest [38]. Furthermore, Pareto distributed fitnesses allows for interesting
experimental study, since the statistics of the fitness distribution can vary greatly depending on the parameter of the
7
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Fig. 1. Visibility of nodes (averaged over 50 independent runs) over time (after T = 100000 iterations) in the BA model. Observe that the visibility
of influential nodes reduce with time as predicted by Theorem 3.1.

Fig. 2. Visibility of nodes (averaged over 50 independent runs) over time in three growth models. The columns represent different parameters
of the Pareto distribution: αp = 1, 2, 3. Each row shows visibility results of the 50 most influential nodes after T = 100000 iterations for the
three growth models — additive (AF), multiplicative (MF) and general fitness (GF) model. In the GF model, quadratic scaling is used, i.e., α = 2;
g(ξi,Dt (i)) = (ξiDt (i))2 . Observe that the visibility of influential nodes reduce over time for the AF model. On the other hand, for the MF and GF
models, the influential node maintains its visibility for extended periods of time. Note that later in time, a new node overtakes the highest visibility
node in the multiplicative model, which does not occur in the GF model.

Pareto distribution. For αp > 1, the mean of the Pareto distribution is αp
αp−1 ; while for αp ≤ 1, the mean is infinite. For

αp > 2, the variance is αp
(αp−1)2(αp−2)

; and for αp ≤ 2, the variance is infinite. In other words, with αp ≤ 1, the distribution
s so heavy-tailed that both the mean and variance are infinite. With αp = 2, the distribution is less heavy-tailed, such
hat the mean is finite but the variance is still infinite. With αp = 3, the distribution has both a finite mean and variance.
n our experimental analysis we show results for these three settings of αp (αp = 1, 2, 3).

We use a quadratic attachment rule for general fitness model with g(ξi,Dt (i)) = (ξiDt (i))2.
For each given growth model and parameter value of the Pareto distribution, we generate a graph GX

T0
, where

∈ {BA, AF ,MF ,GF} and T0 = 10000. We define p(k)(T0;GX
t ) to be the visibility of the node in graph GX

t which had the k-
ighest visibility in graph GX

T0
. For each growth model, starting from GX

T0
, we generate R realizations GX,(1)

T ,GX,(2)
T , . . .GX,(R)

T
with T = 100000, which are mutually independent conditioned on GX

T0
. Since we are interested in the evolution

of the visibility of influential nodes, for the purpose of this experiment we track the visibility of the top 50 nodes
8
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Fig. 3. Visibility of new node (averaged over 50 independent runs) added with a high fitness value over time in the three growth models — additive,
multiplicative and general fitness model. This represents results for different parameters of the Pareto distribution: αp = 1, 2, 3. Observe that with
or αp = 2, 3, the new node with high fitness value increases its visibility over time, which is not observed for the GF model.

tarting from t = 10000 to t = 100000. However, conditioned on the graph at time T0, the visibility values are
andom variables; therefore, we average the visibility values across all the realizations at any given time. We define
¯ (k)(T0; t; X) =

1
R

∑R
r=1 p(k)(T0;G

X,(r)
t ) as the averaged visibility of the node at time t (t > T0) which had the k-highest

visibility at time T0 for growth model X .
In other words, we track p(k)

(
T0;G

X,(r)
t

)
for k = 1, 2, . . . , 50, r = 1, 2, . . . , R, t = 10000, 10001, . . . , 100000, and

X ∈ {BA, AF ,MF ,GF}. For large enough independent runs R, we expect p̄(k)(T0; t; X) to be a reasonable approximation of
E
[
p(k)

(
T0;G

X,(1)
t

) ⏐⏐GX
T0

]
, which is the expected value of visibility at time t for the node which had the k-highest visibility

value at time T0 conditioned on the graph at time T0.
The box plots2 in Figs. 1 and 2 show the change in visibility of top 50 nodes at t = T0 = 10000 when the graph is

allowed to grow for 90000 iterations until t = 100000. Visibility values averaged over R = 50 independent runs from
T0 = 10000 are shown. We observe from the two figures that the highest visibility nodes in the BA and AF slowly reduce in
their visibility values over time as was predicted by Theorem 3.1. We can further characterize the decay in node visibility
in these two model. Results from [9] show that Dt (i) ∼

( t
i

)1/2, which leads to pBAi (t) =
Dt (i)
2t ∼

(
1

2
√
i

)
t−1/2. We also note

from Theorem 3.1 that the change in visibility of node i between t+1 and t in the AF model can be rewritten as

E
[
pAFi (t + 1) − pAFi (t) | Gt−1, ξt

]
= −

pAFi (t) (ξt + 1)
(Ξt + 2t)

. (28)

sing Strong Law of Large Numbers we obtain the following approximation for large t

E
[
pAFi (t + 1) − pAFi (t) | Gt−1, ξt

]
∼ −

pAFi (t) (ξt + 1)
t (2 + E [ξ ])

, (29)

nd upon applying expectation with respect to ξt , we obtain

E
[
pAFi (t + 1) − pAFi (t) | Gt−1

]
∼ −

pAFi (t) (E [ξ ] + 1)
t (2 + E [ξ ])

. (30)

The above implies that

dpAFi (t)
pAFi (t)

∼ −
(1 + E [ξ ])
t (2 + E [ξ ])

dt

hich in turn leads to the following approximation, pAFi (t) ∼ t−
(1+E[ξ ])
(2+E[ξ ]) . This implies that for the AF model the decay in

isibility will be as t−θ , with 1
2 < θ < 1. Observe that when E [ξ ] = 0, the visibility decays as t−1/2 as would be expected

in the BA model.
We also observe that many more nodes in BA and AF models have significantly higher visibility values compared

to the average visibility value in their individual networks. However, for the multiplicative fitness model only 2 nodes
exhibit high visibility values (for αp = 1, 2), with one node dominating the entire network at any point of time for most
of the duration. In the MF model, for αp = 1, 2, we observe that a node with lower visibility replaces one with higher
visibility between t = T0 = 10000 and t = 100000, because the lower visibility node joined the network later but with

2 The box plot graphically represents certain statistical properties of a dataset through their quartiles. Observe that boxes contain lines extending
from itself (called whiskers), indicating variability outside the upper and lower quartiles. Outliers present in the data distribution are shown as
individual data points (refer to points represented using diamonds in Figs. 1 and 2). The minimum and maximum values in the dataset (excluding
outliers) corresponds to the lower and upper whiskers respectively. The first (Q1) and the third (Q3) quartiles are captured by the lower and upper
end of the boxes, while the median is captured by a line within the box. In our plots, the lower whisker corresponds to the smallest data sample
larger than Q1 − 1.5∗IQR and upper whisker corresponds to the largest data sample smaller than Q3 + 1.5∗IQR, where IQR represents Inter Quartile
ange (Q − Q ). Data points lying beyond the lower and upper whiskers are considered as outliers.
3 1

9
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significantly higher fitness value. For αp = 3, we do not see this behavior because it is less likely that a node with a
significantly high fitness value will enter the network. As a result, in contrast with BA and AF models, for the MF model
we can see from (11) and Fig. 2 that in expectation, an influential node is able to increase its visibility over time, given
that its fitness value remains large with respect to rest of the nodes in the network.

While we observe that in both the MF and GF models, nodes with high visibility are able to maintain their influence
(or, visibility) over time, we next investigate how easy it is for new nodes with high fitness to gain influence over time.
For this purpose, we conduct an experiment where we introduce a node at time t = T0 + 1 = 10001, with fitness
alue ξT0+1 = 2maxt∈VT0 ξt , i.e., twice the fitness value of the maximum fitness value among all nodes until time T0.
or growth model X ∈ {AF ,MF ,GF}, we generate R = 50 realizations beyond time T0 by setting the fitness value
f node T0 + 1 as mentioned above. We define pi

(
GX

t

)
to be the visibility of the node i in graph GX

t . We average the
isibility values across R realizations, GX,(1)

T ,GX,(2)
T , . . . ,GX,(R)

T , and compute the averaged visibility of node T0 + 1 defined
as p̄T0+1(t) =

1
R

∑R
r=1

(
GX,(r)

t

)
, t > T0. Subsequently, we track the visibility of this newly introduced node in the three

fitness models and present the results in Fig. 3. We observe that in the AF and GF models, the visibility of the newly
introduced node decreases with time. This concurs with Theorem 3.1 where we showed that the visibility of nodes in AF
models decreases with time; and with Theorem 3.2 where we argue that in the general fitness model with a superlinear
attachment rule, it becomes progressively difficult for new nodes to get visible in the network. For the MF model with
αp = 1, we observe that p̄T0+1(t) increases slightly but decays beyond t = 30000. This is because nodes with even higher
fitness values enter the network after node T0 + 1. However, for αp = 2, 3 the visibility of node T0 + 1 keeps increasing
ntil t = 100000. Note that for αp = 3, node T0 + 1 becomes dominant in the network very quickly because as the node

increases its degree, the degree-fitness product becomes large compared to that of other nodes in the network because
having a large fitness node is a rarer event for larger value of αp.

From the experiments we reaffirm that multiplicative models allow high visibility nodes to maintain their influence in
the network for a longer period of time, while at the same time allowing high fitness nodes that are introduced later in the
network to become influential. However, we observe that only a few number of nodes can be influential in the network at
any given moment of time. This leads us to consider spatial attachment rules in conjunction with the multiplicative model
to enforce regions of influence for each individual node such that multiple influential nodes can coexist in a network at
the same time.

5. Analytical results on node visibility — Spatial models

In the previous sections, we investigated the node visibility dynamics of the fitness models. A major takeaway was that
multiplicative fitness models allow influential nodes to maintain their visibility while still permitting newly introduced
nodes with high fitness to gain influence over time. However, a shortcoming of the MF model was that it could not support
a multiplicity of influential nodes. We investigate whether a configuration of spatial models exists that retains the positive
aspects of the MF model while addressing this shortcoming.

5.1. Preliminaries — results on various notions of visibility in spatial models

Having defined global (6) and local (7) visibilities for a node in Section 2, we find it helpful to define a notion of
maximum visibility

pmax
i (t + 1) = max

χ

h(χi, χ; ξi,Di(t))∑
j∈Vt h(χj, χ; ξj,Dj(t))

, (31)

ith χ∗

t,i being the location vector for which the maximum is attained. For rest of the analysis, we assume that the
ttachment function h is separable into a product form of α(χ1, χ2) · β(ξ,D) as shown in (8). For analytical purposes,
e set α(χ1, χ2) = e−γ d(χ1,χ2), where d : A × A → R is a metric on the location space A.

emma 5.1. For α(χ1, χ2) = e−γ d(χ1,χ2) and every t = 1, 2, . . .,

lim
γ→∞

plocali (t + 1) = 1 = lim
γ→∞

pmax
i (t + 1) (32)

and

lim
γ→∞

χ∗

t,i = χi. (33)

In other words, for all δ > 0 and for all t = 1, 2, . . ., there exists γt,δ such that for all γ ≥ γt,δ⏐⏐⏐plocali (t + 1) − pmax
i (t + 1)

⏐⏐⏐ < δ

nd ⏐⏐χi − χ∗

t,i

⏐⏐ < δ.
10
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P
roof. For i in Vt and t = 1, 2, 3, . . .

plocali (t + 1)

=
β(ξi,Di(t))

β(ξi,Di(t)) +
∑

j̸=i e
−γ d(χi,χj)β(ξj,Dj(t))

≥
β(ξi,Di(t))

β(ξi,Di(t)) +
(
t maxk∈Vt ξk

)∑
j̸=i e

−tϵd(χi,χj)

γ=tϵ→∞

−−−−−→ 1

and we obtain first part of (32). Note that the scaling γ = tϵ implies that for larger graphs, a smaller γ would be necessary.
Second part is obtained by noting that pmax

i (t + 1) ≥ plocali (t + 1) for every node i and time t . Eq. (33) also follows
similarly. ■

Lemma 5.1 suggests that pmax
i is a good approximation for plocali when γ is sufficiently large. Next, we derive

relationships between the global and local notions of visibility.

Lemma 5.2. For ϵ > 0, we have

e−2γ ϵP [d(χ, χi) < ϵ] plocali (t + 1) ≤ pglobali (t + 1)

≤ pmax
i (t + 1) ≈ plocali (t + 1). (34)

Proof. For convenience, we use the shorthand notation, βi(t) = β(ξi,Di(t)) for i in Vt and t = 1, 2, . . .. The upper bound
on pglobali (t + 1) follows from the definition of pmax

i (t + 1). To obtain the lower bound, for a fixed ϵ > 0 we condition
on the event 1 [d(χi, χ ) < ϵ]

pglobali (t + 1)

≥ Eχ

[
h(χi, χ; ξi,Di(t))∑
j∈Vt h(χj, χ; ξj,Dj(t))

1 [d(χi, χ ) < ϵ]

]
≥ P [d(χi, χ ) < ϵ] · min

χ :d(χ,χi)<ϵ

h(χi, χ; ξi,Di(t))∑
j∈Vt h(χj, χ; ξj,Dj(t))

= P [d(χi, χ ) < ϵ] × min
χ :d(χ,χi)<ϵ

e−γ d(χ,χi)βi(t)
e−γ d(χ,χi)βi(t) +

∑
j̸=i e

−γ d(χ,χj)βj(t)

≥ P [d(χi, χ ) < ϵ] ·
e−2γ ϵβi(t)

βi(t) +
∑

j̸=i e
−γ d(χi,χj)βj(t)

= e−2γ ϵP [d(χ, χi) < ϵ] plocali (t + 1), (35)

where the penultimate step follows from triangle inequality. ■

Lemma 5.2 gives a lower and upper bound for the global visibility in terms of the local visibility. As argued previously,
since the model is more concerned with local attractivity of nodes, we will present analysis for plocali . Lemma 5.2 suggests
that changes in the local visibility should also be aptly reflected in the global visibility.

5.2. Node visibility over time

For convenience, we define some shorthand notation: For i in Vt , βi(t) = β(ξi,Di(t)). For i, j in Vt , ĥt,i→j =

h(χi, χj; ξi,Dt−1(i)), ĥ+

t,i→j = h(χi, χj; ξi,Dt−1(i) + 1) represent the attachment function for node i at the location of node
j, and ∆h

t,i→j = h(χi, χj; ξi,Dt−1(i) + 1) − h(χi, χj; ξi,Dt−1(i)). For k in Vt , Ωt,k = 1 [St = k] and Γt,k =
∑

i∈Vt ĥt,i→k.

Theorem 5.3. For every t = 0, 1, . . ., and i in Vt−1: Let Gt−1 be the graph at time t − 1, we have

E
[
plocali (t + 1) − plocali (t) | Gt−1, ξt , χt

]
≲ C1

∑
k∈Vt

βk(t − 1)e−γ d(χi,χk)
{
ξi − e−γ d(χi,χk)ξk − ξt

}
(36)

and

E
[
plocali (t + 1) − plocali (t) | Gt−1, ξt , χt

]
≳ C2

∑
βk(t − 1)e−γ d(χi,χk) ×

{
ξi − e2ϵγ e−γ d(χi,χk)ξk − e3ϵγ ξt

}
(37)
k∈Vt

11
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C1 =
1(∑

j∈Vt h(χj, χi; ξj,Dt−1(j))3
)βi(t − 1)

and

C2 = P [d(χt , χ ) < ϵ] e−ϵγ
×

1(∑
j∈Vt h(χj, χi; ξj,Dt−1(j))3

)βi(t − 1).

Proof. The difference in the local visibility of node i can be written as follows

plocali (t + 1) − plocali (t)

=
h(χi, χi; ξi,Dt−1(i) + 1 [St = i])∑
j∈Vt h(χj, χi; ξj,Dt−1(j) + 1 [St = j])

−
h(χi, χi; ξi,Dt−1(i))∑

j∈Vt−1
h(χj, χi; ξj,Dt−1(j))

= Ωt,i

[
ĥ+

t,i→i

∆h
t,i→i + Γt,i + h(χt , χi; ξt , 1)

−
ĥt,i→i

Γt,i

]
+

∑
k̸=i

Ωt,k

[
ĥt,i→i

∆h
t,k→i + Γt,i + h(χt , χi; ξt , 1)

−
ĥt,i→i

Γt,i

]

≈ Ωt,i

[
∆h

t,i→i

Γt,i

]
−

∑
k̸=i

Ωt,k

[
ĥt,i→i∆

h
t,k→i

Γ 2
t,i

+
h(χt , χi; ξt , 1)ĥt,i→i

Γ 2
t,i

]
. (38)

he approximation (38) holds when

Γt,i

Γt,i +∆h
t,k→i + h(χt , χi; ξt , 1)

≈ 1,

which would be true for sufficiently large values of t . Using (38), we upper bound the expected change in local visibility
by noting the fact that the expected increase in visibility is the most when the new node has the highest probability to
form connection with node i, which occurs when the attribute of the new node is close to χi

E
[
plocali (t + 1) − plocali (t) |Gt , ξt , χt

]
≤ E

[
plocali (t + 1) − plocali (t) |Gt , ξt , χt = χi

]
≤

1
Γt,i

[
ĥt,i→i

Γt,i
∆h

t,i→i −
∑
k̸=i

(
ĥt,k→i

Γt,i

)(
ĥt,i→i

Γt,i
∆h

t,k→i +
h(χt , χi; ξt , 1)ĥt,i→i

Γt,i

)]
(39)

≈
1
Γ 3
t,i

∑
k∈Vt

{
ĥt,i→iĥt,k→i∆

h
t,i→i − ĥt,i→iĥt,k→i∆

h
t,k→i − ĥt,k→iĥt,i→ih(χi, χi; ξt , 1)

}
≈

1
Γ 3
t,i
β(ξi,Dt−1(i))

∑
k∈Vt

β(ξk,Dt−1(k))e−γ d(χi,χk) ×
{
∆h

t,i→i −∆h
t,k→i − β(ξt , 1)

}
. (40)

ote that the approximation (40) holds when the sum of individual terms for nodes k (in Vt ) excluding i is approximately
qual to the sum of terms over all nodes. In other words, the approximation holds when(

ĥt,i→i
Γt,i

)(
ĥt,i→i
Γt,i

∆h
t,i→i +

h(χt ,χi;ξt ,1)ĥt,i→i
Γt,i

)
∑

k̸=i

(
ĥt,k→i
Γt,i

)(
ĥt,i→i
Γt,i

∆h
t,k→i +

h(χt ,χi;ξt ,1)ĥt,i→i
Γt,i

) ≈ 0,

which would be true for sufficiently large values of t . Observe that ∆h
t,i→i = β(ξi,Dt−1(i)+1)−β(ξi,Dt−1(i)) which equals

ξi in a multiplicative α model. Similarly, ∆h
t,k→i equals e−γ d(χi,χk)ξk. Therefore, in a multiplicative model, (40) reduces to

E
[
plocali (t + 1) − plocali (t) | Gt , ξt , χt

]
≲

1
Γ 3
t,i
βi(t − 1) ×

∑
k∈Vt

βk(t − 1)e−γ d(χi,χk)
{
ξi − e−γ d(χi,χk)ξk − ξt

}
, (41)

which gives the upper bound (36). To lower bound the same, we define the following notation — For ϵ > 0,

χ ϵi,min = arg min
χ :d(χ,χ )<ϵ

h(χi, χ; ξi,Di(t))∑
h(χ , χ; ξ ,D (t))

.

i j∈Vt j j j
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v
t

I

Fig. 4. Visibility of nodes (averaged over 50 independent runs) over time in the spatial growth model, that had the k-highest visibility at time
T0 = 10000, for k = 1, 5, 10, 30, 50, 100, 200. The columns represent different parameters of the Pareto distribution: αp = 1, 2, 3. Each row shows
isibility results for different values of γ parameter, 5, 10 and 50 (from top to bottom). The multiplicative factor β(ξi,Di(t)) is set to ξiDi(t). Note
hat more influential nodes emerge for larger values of γ , and they can retain their visibility over longer periods of time for higher values of αp .

n other words, χ ϵi,min is the attribute vector on the ϵ−ball around χi where the attachment probability to i is the lowest.
Using (38), we lower bound the expected change in local visibility by noting that conditioned on the event that the

new node has an attribute vector within an ϵ−ball around χi, it will be minimum when it is equal to χ ϵi,min. Accordingly,
we define the following notation: ĥmin

t,k→i = h(χk, χ
ϵ
i,min; ξk,Dt−1(k)). We lower bound using conditioning arguments

E
[
plocali (t + 1) − plocali (t) |Gt , ξt , χt

]
≥ E

[
plocali (t + 1) − plocali (t)

⏐⏐ Gt , ξt , d(χt , χ ) < ϵ

]
× P [d(χt , χ ) < ϵ]

≥ E
[
plocali (t + 1) − plocali (t)

⏐⏐ Gt , ξt , χt = χ ϵmin

]
× P [d(χt , χ ) < ϵ]

≳ P [d(χt , χ ) < ϵ] ·
1
Γ 3
t,i

∑
k∈Vt

{
ĥmin
t,i→iĥt,k→i∆

h
t,i→i − ĥt,i→iĥmin

t,k→i∆
h
t,k→i − ĥmin

t,k→iĥt,i→ih(χi, χ
ϵ
i,min; ξt , 1)

}
≳ P [d(χt , χ ) < ϵ]

1
Γ 3
t,i
β(ξi,Dt−1(i)) ×

∑
k∈Vt

βk(t − 1)e−γ d(χi,χk) ×
{
e−ϵγ ξi − eϵγ e−γ d(χi,χk)ξk − e2ϵγ ξt

}
, (42)

where the final step follows by applying triangle inequality. ■

Also, note that the approximation holds under similar conditions as stated for the proof of the upper bound. From the
lower bound (37) it is clear that the visibility will decrease when nodes close to i have high fitness values or the new node
has a very high fitness value. The upper bound (36) indicates that if the fitness of node i is sufficiently high compared
to other nodes in its local neighborhood, then its visibility should increase. This shows how the local neighborhood of
particular node impacts its visibility. Also, given the local nature of the behavior of visibility, more nodes end up being
visible in the spatial model compared to the multiplicative fitness model.

6. Experimental results on node visibilities — Spatial models

To illustrate the findings of Section 5.2, we perform experiments discussed in this section. In the previous section,
we theoretically argued how the spatial (S) model with multiplicative β would lead to multiple leaders coexisting in the
network. Here we present experimental results that show the multiplicity of leaders that can coexist in the network and
how this varies with the decay parameter γ . Throughout, the fitness variable ξ is taken to be Pareto distributed (see (27))
with parameter αp.

For each αp = 1, 2, 3 and γ = 5, 10, 50, we generate a graph GS
T0

as an instantiation of the spatial model, with
T = 10000. We denote plocal(T ;GS) to be the local visibility of the node in graph GS which had the k-highest local
0 (k) 0 t t
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isibility in graph GS
T0
. As previously, we generate R realizations GS,(1)

T ,GS,(2)
T , . . .GS,(R)

T with T = 100000, which are
mutually independent conditioned on GS

T0
. We average the local visibility values across all the realizations at any given

time and denote p̄local(k) (T0; t; S) =
1
R

∑R
r=1 p

local
(k) (T0;G

S,(r)
t ) as the averaged local visibility of the node at time t which

had the k-highest visibility at time T0 for the spatial model.
In other words, we track plocal(k)

(
T0;G

S,(r)
t

)
for nodes k = 1, 5, 10, 30, 50, 100, 200, runs r = 1, 2, . . . , R, and decay

parameters γ = 5, 10, 50, with 10000 ≤ t ≤ 100000. Observe that the local visibility values of nodes are bounded above
by 1, but they could sum up to values larger than 1. This is an artifact of the way local visibility is defined. Lemma 5.2 gives
the relationship between the concept of local visibility and global visibility (which is the actual probability of connection
to the concerned node). An easy way of deriving the approximate probability of attachment to a particular node i is
to consider the domain of attraction around the node. We can define the domain of attraction of node i as the region
in the location space such that the distance factor α(·, ·) is at least 1

e . The probability that a new node arises in the
domain of attraction of node i is π

γ 2 . Therefore an approximation of node visibility that is normalized across the network
is π

γ 2 plocali (t + 1).
Fig. 4 shows the change in local visibility of top kth nodes at t = T0 = 10000 when the graph is allowed to grow

or 90000 iterations until t = 100000. Visibility values averaged over R = 50 independent runs from T0 = 10000 are
hown. We observe that with increasing γ , the number of nodes with high local visibility increases in the network. This
orroborates the insight that with increasing γ , the region of influence of nodes decreases leading to the potential of
arger number of influential nodes in the network. For γ = 5 and αp = 1, we see that the k = 5th node increases slightly
n visibility beyond t = 10000 but then decays beyond a certain point; and with αp = 2, the same node maintains its
isibility until t = 100000, while for αp = 3 the node increases its local visibility and dominates its region eventually.
owever for k = 10, 30, . . ., the corresponding nodes have very low values of local visibility. This changes for the γ = 10
ase. Here, the k = 10th node also shows a high value of local visibility due to the reduced region of influence of nearby
nfluential nodes. This becomes even more pronounced in γ = 50 where we observe that even the k = 200th node
as non-trivial local visibility values that are maintained over some period of time for αp = 2, 3. This shows that with
ncreasing the decay parameter of the spatial model we can significantly increase the number of leaders in the network,
any of whom can maintain their influence in their region.

. Conclusion

In this paper, we first defined the concept of node visibility, and analyzed the visibility profile of nodes in the context
f various network growth models. Firstly, we observed that in the multiplicative fitness model, nodes with high fitness
alues can successfully maintain visibility in the network to a greater extent when compared with the additive fitness
nd BA models. A general fitness model that has a non-linear attachment rule, e.g., that combines the degree and fitness
alues in a non-linear (quadratic) fashion, would also allow influential nodes to maintain visibility. However, unlike in
ultiplicative models, in these general fitness models with non-linear attachment rules we showed that it becomes
rogressively more difficult for new nodes with high fitness values to become influential in the entire network. We
emonstrated through experimental results that in multiplicative models only a few number of nodes can be influential
n the network at any given moment of time. This leads us to investigate spatial models that allows a multiplicity of
nfluential nodes to exist in the network. We also show how the decay parameter in these spatial models can be used to
ontrol the number of leaders in the network. Throughout, we describe conditions under which influential nodes might
aintain or increase their visibility over time.
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