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Hide and Seek: Outwitting Community
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Abstract— Community affiliation of a node plays an important
role in determining its contextual position in the network, which
may raise privacy concerns when a sensitive node wants to hide
its identity in a network. Oftentimes, a target community seeks
to protect itself from adversaries so that its constituent members
remain hidden inside the network. The current study focuses
on hiding such sensitive communities so that the community
affiliation of the targeted nodes can be concealed. This leads
to the problem of community deception, which investigates the
avenues of minimally rewiring nodes in a network so that a given
target community maximally hides from a community detection
algorithm (CDA). We formalize the problem of community decep-
tion and introduce Network deception using permanence loss
(NEURAL), a novel method that greedily optimizes a node-centric
objective function to determine the rewiring strategy. Theoretical
settings pose a restriction on the number of strategies that
can be employed to optimize the objective function, which in
turn reduces the overhead of choosing the best strategy from
multiple options. We also show that our objective function is
submodular and monotone. When tested on both synthetic and
seven real-world networks, NEURAL is able to deceive six widely
used CDAs. We benchmark its performance with respect to four
state-of-the-art methods on four evaluation metrics. In addition,
our qualitative analysis on three other attributed real-world net-
works reveals that NEURAL, quite strikingly, captures important
metainformation about edges that otherwise could not be inferred
by observing only their topological structures.

Index Terms— Community detection, community hiding,
complex networks, permanence.

I. INTRODUCTION

DETECTING communities from large networks has
remained as one of the major research problems in

the last two decades. Different heuristics, metrics, and opti-
mization techniques have been proposed to detect communi-
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ties from multiple types of networks [1]. However, of late,
limited efforts have been visible to understand how easily
a community detection algorithm (CDA) can be deceived by
minimal rewiring of nodes.

In this article, we ask a fundamental question: how do
we hide a target community from being exposed to a CDA,
assuming limited rewiring operations are allowed? In other
words, can a node or a community disguise its positioning in
the network in order to escape detection [2]? We call this
problem hide and seek community (HSC). Answering this
question matters since it helps the social network users in
hiding their identity from online surveillance1 [4]. It also
helps law-enforcement organizations identify criminal acts
deceiving online identity [5]. This may also be useful for
counter-terrorism units in order to deploy spies into a terrorist
network. The solution to the current problem would help the
spies determine who they should start a new friendship with
(edge addition) or which existing friendship they should try
to break (edge deletion) to conceal their community identity.
However, one may argue that the same method can be misused
by adversaries. Nonetheless, we believe that our investigation
brings issues to light for the plan of novel community detection
methods vigorous to deception strategies.

To date, the fundamental question stated above has got very
little attention as most of the focus has been concentrated
toward building efficient algorithms for community detec-
tion. Nagaraja [6] made a pioneering attempt to examine
the degree of network information required by an attacker
to infer the community membership information. Recently,
Waniek et al. [2] proposed a heuristic-based solution to evade
network centrality analysis. Fionda and Pirrò [5] proposed a
novel metric and greedily optimized it to hide the members
of a target community from being detected by the CDAs.
Liu et al. [7] proposed an approach to maximally hide the
entire community structure (as opposed to a target community)
with a minimum rewiring of the network structure.

Here, we pose the HSC problem as a constrained optimiza-
tion problem. The objective function is designed based on
permanence [8], a node-centric metric we proposed previously,
which has been proved to be highly effective in detecting the
entire community structure of a network. Permanence, being a
local metric, uses limited information of a node to determine
its community membership. We theoretically prove that only
two types of edge update operations (intercommunity edge
addition and intracommunity edge deletion) are useful for
rewiring nodes to optimize our proposed objective function.

1Mislove et al. [3] showed how by breaking down Facebook user network
and attributes of certain users, it is possible to gather private data about other
Facebook users.

2329-924X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2023 at 04:03:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4888-7996
https://orcid.org/0000-0002-0210-0369
https://orcid.org/0000-0002-6353-5411


800 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

Fig. 1. Flow diagram showing the procedure of NEURAL.

We further show that the objective function is submodular
and monotone with respect to the required edge updates.
Therefore, we propose Network deception using permanence
loss (NEURAL), a greedy optimization algorithm to optimize
the objective function. Given a network G, its community
structure CS obtained from a CDA and a target community C
whose constituent nodes VC need to be concealed, NEURAL
rewires nodes within the rewiring budget β in such a way that
CDA is unable to identify the original community affiliation
of VC (Fig. 1 shows a flow diagram).

Extensive experiments are conducted on both synthetic and
seven real-world networks. Six widely used CDAs are consid-
ered for deception. We compare NEURAL with four state-
of-the-art community deception methods. The performance
is measured based on four evaluation metrics (two of them
are proposed by us). Our quantitative analysis shows that
NEURAL significantly outperforms others across all the data
sets and all the evaluation metrics.

We further conduct a detailed qualitative analysis to explain
the physical significance of edges selected by the deception
methods on three attributed real-world networks—citation
network, terrorist network, and breast cancer network. Surpris-
ingly, we observe that NEURAL is able to capture important
metainformation of edges that otherwise could not be inferred
just by observing the topological structure of networks.

In short, our major contributions are fourfold.
1) Novel Objective Function: Our proposed objective func-

tion is novel, which considers minimum information of
nodes for network rewiring.

2) Novel Algorithm: We propose NEURAL, a novel greedy
optimization algorithm for community deception.

3) Quantitative Evaluation: We perform an extensive eval-
uation on multiple data sets and show that NEURAL
outsmarts existing approaches for hiding the target com-
munity within the specific budget.

4) Qualitative Evaluation: We further interpret the edges
selected for node rewiring by the deception methods and
show that NEURAL captures important metainformation
of edges in three real-world networks.

Reproducibility: The codes and data sets are available at:
https://github.com/mittalshravika/HideAndSeek-NEURAL.

II. RELATED WORK

A. Community Detection

There has been a plethora of research in the detection of
communities from a given network. These include traditional
clustering-based algorithms such as hierarchical clustering,
partitional clustering, and spectral clustering, which group
nodes together based on a similarity metric [9]. Another
class of CDAs revolves around the optimization of met-
rics that define the quality of a network partition, such as
modularity [10], [11], conductance [12], and cut ratio [13].
Few other methods are based on random walks [14], infor-
mation theory [15], [16], and spectral algorithms [17], [18].
Algorithms that detect overlapping communities have also
been proposed [19], [20]. A detailed study of CDAs can be
found in [21] and [22].

B. Community Deception

Another area of interest that has started revolving very
recently is community deception, i.e., hiding a target commu-
nity or the entire community structure from getting exposed
to CDAs. Nagaraja [6] proposed a counter detection method
for hiding a community by adding edges under a certain
budget. The endpoints of edges to be added are chosen
using vertex-centrality measures (degree centrality, eigenvector
centrality, and random initialization). Waniek et al. [2] pro-
posed DICE, an algorithm that deletes intracommunity edges
(disconnect internal) and adds intercommunity edges (connect
external), inspired by the functioning of modularity. They
also devised a metric to quantify the concealment of a target
community in the network. Fionda and Pirrò [5] referred to the
problem of hiding a community as community deception. They
devised a greedy optimization algorithm (dubbed SADDEN
henceforth) to hide a target community based on safeness gain,
a new metric that they proposed to quantify how safe a node
is under adversarial attack. SADDEN requires the knowledge
of the local community rather than knowing the entire com-
munity structure of the network to deceive CDAs. Along with
this, the authors proposed a metric, called deception score,
to quantify the effect of the community deception algorithm on
the network. They also showed that their method outperforms
modularity-based approaches. Recently, Liu et al. [7] extended
the problem of hiding a target community to hiding the
entire community structure. They proposed an algorithm for
community structure deception based on information theory
using network entropy minimization.

We consider all the methods mentioned above (Nagaraja,
DICE, and SADDEN) as baselines2 along with a random edge
rewiring method, except Liu et al. [7] as this method focuses
on the deception of the entire community structure (instead of
a single target community); moreover, the metric used in their
method (community-based structural entropy) requires entire
community information.

C. How NEURAL Is Different From Others?

Table I summarizes how NEURAL is different from the
existing methods for community deception. NEURAL uses
permanence as a metric to determine how to update a given

2To our knowledge, these are the only existing methods that attempted to
solve the HSC problem.
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TABLE I

COMPARISON OF NEURAL WITH EXISTING METHODS. E+,−: EDGE
ADDITION AND DELETION. NC: NODE CENTRALITY. E→ C: EDGES

CONNECTED WITH THE NODES IN THE TARGET

COMMUNITY C. QA: QUALITATIVE ANALYSIS

TABLE II

STATISTICS OF THE REAL-WORLD NETWORKS (|V | AND |E|
REPRESENT THE NUMBER OF NODES AND EDGES,

RESPECTIVELY; �k� (kMAX ) REPRESENTS THE
AVERAGE (MAXIMUM) DEGREE OF NODES)

network efficiently in order to hide the target community.
We perform comprehensive evaluation on both synthetic and
real-world networks using four different evaluation metrics.
We further perform a qualitative analysis on three attributed
networks to understand the significance of the selected edges.

III. PROBLEM FORMULATION

A. Preliminaries

A network G = (V , E) is defined as an undirected graph
with V as the set of vertices and E as the set of edges. After
applying a CDA on G, we get C S = (C1, C2, . . . , Ck) as the
community structure. We only consider communities that are
nonoverlapping. For community C ∈ C S, an intracommunity
edge �u, v� is defined such that u, v ∈ C and an intercommu-
nity edge �u, v� is defined such that u ∈ C and v ∈ C � where
C∩C � = φ. Eintra(C) (resp. Einter(C)) denotes the set of intra-
(resp. inter-) community edges corresponding to C .

B. Hide and Seek Community

Our primary goal is to come up with an algorithm that,
with minimum edge rewiring, is able to hide a given target
community C from a community detection method. In other
words, the actual community membership information of
nodes inside C should not be revealed by the community
detection method. This is done by rearranging the structure of
the network using a certain number (β) of edge updates (which
we call budget for network rewiring). We also assume that each
edge update operation will incur a unit cost. One approach
would be to search through the entire space for possible edge
updates exhaustively and select the ones that are able to hide
the target community C the most. However, searching through
this huge space of all the possible combinations of edge
updates would become computationally expensive in case of
large networks. Along with this, such an exhaustive technique
would require the knowledge of the entire network and may
also depend on the type of CDA that we intend to fool.

To avoid this, we introduce the problem, called HSC,
to camouflage a target community C from a community
detection method.

Definition 3.1: (HSC) For a network G = (V , E), the prob-
lem of HSC is to hide a target community C with the help of
network edge updates constrained by a parameter β. It can be
posed as a constrained optimization problem as follows:

argmax
E �(C)

F(C, E(C), β, E �(C)) (1)

where, E(C) = Eintra(C)∪Einter(C), E �(C) = (E(C)∪Eadd)\
Edel, and Eadd (resp. Edel) indicates the set of edges to be
added (resp. deleted) to hide C such that |Eadd| + |Edel| ≤ β.

IV. METHODOLOGY

We consider permanence [8], [23], a node-centric metric3 to
design the objective function F in (1). We theoretically show
that limited edge update operations are required to maximize
the permanence loss (our objective function). We also show
that permanence loss is submodular and monotone with respect
to each of the edge update operations. Therefore, we propose
NEURAL, a greedy algorithm that makes use of permanence
loss in order to hide a target community C . This section first
briefly describes permanence, followed by the greedy strategy
used in NEURAL.

A. Permanence

Chakraborty et al. proposed permanence [8], [23], a vertex-
centric metric that quantifies the containment of a node v in
a network community C . The formulation of permanence is
based on three factors: 1) the internal pull I (v), denoted by
the internal connections of a node v within its own com-
munity; 2) maximum external pull Emax(v), denoted by the
maximum connections of v to its neighboring communities;
and 3) internal clustering coefficient of v, Cin(v), denoted by
the fraction of actual and possible number of edges among
the internal neighbors of v. The above three factors are then
suitably combined to obtain the permanence of v as

Perm(v, G) = I (v)

Emax(v)
× 1

deg(v)
− (1− Cin(v)). (2)

Fig. 2 shows a toy example to calculate the permanence value
of a node.

This metric indicates that a vertex would remain in its own
community as long as its internal pull is greater than the exter-
nal pull or its internal neighbors are densely connected to each
other, hence forming a near clique. The permanence for a net-
work G is then defined as Perm(G) = (

∑
v∈V Perm(v)/|V |).

The reasons behind choosing permanence instead of other
community scoring metrics, such as (local) modularity [24],
[25], conductance, and cut ratio [1], are twofold: 1) perma-
nence is a vertex-centric local metric, which would enable us
to update edges incrementally in order to change the network
structure without looking into the entire network structure, and
2) permanence has been shown to be superior to other local
and global scoring metrics for community detection [22].

3Permanence can also be computed for an entire network.
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Fig. 2. Toy example demonstrating the calculation of permanence for a node,
given the network and the community structure.

B. Proposed Objective Function: Permanence Loss

Our proposed community deception method NEURAL (dis-
cussed in Section IV-D) aims to reduce the permanence of the
network for a target community C to be hidden from CDAs.
We propose to do so because reducing permanence of a vertex
would disrupt its containment in the original community,
changing the community structure of the network, making
it difficult for detection algorithms to identify the original
communities. We search for edge updates (addition/deletion of
edges) by maximizing the permanence loss at every iteration,
which is defined as

Pl = Perm(G)− Perm(G �) (3)

where G represents the original network and G � represents
the modified network after updating edges (see Fig. 1)
with respect to the target community C , elaborated in
Sections IV-C and IV-D.

In Section IV-C, we will show that the permanence loss
will be affected (positively) only due to the intracommunity
edge deletion and intercommunity edge addition. Readers are
encouraged to see the Supplementary Material where we show
that permanence loss is submodular and monotone with respect
to each of the edge updates stated above.

C. Edge Updates

In this section, we describe four possible edge update
operations to maximize permanence loss Pl in NEURAL—
intercommunity and intracommunity edge deletion, and inter-
community and intracommunity edge addition.

1) Intercommunity Edge Deletion:
Theorem 4.1: Deleting an intercommunity edge �u, v�

where u ∈ C and v ∈ C � such that C ∩ C � = φ does not
result in permanence loss.

Proof: In this proof, we show that deleting an intercom-
munity edge does not amount to permanence loss. An inter-
community edge deletion just affects the permanence measure
for u and v. We will only show the change in permanence for
node u (same applies to v). There can be two cases given in
the following.

1) Emax(u) Does Not Change After Edge Deletion: In this
case, we assume that the maximum external connec-
tions for node u remain the same after deleting �u, v�.
Deleting �u, v� would not change Cin(u). It would only
decrease its degree by 1. Therefore, for permanence

loss, we need to see whether Pl = Perm(u, G) −
Perm(u, G �) ≥ 0. This reduces to

Pl = I (u)

Emax(u)
×

[
1

deg(u)
− 1

deg(u)− 1

]
< 0.

Therefore, no permanence loss is possible in this case.
2) Emax(u) Changes After Edge Deletion: In this case,

we assume that the deletion of edge �u, v� affects the
maximum external connections of node u. This is the
case where C � is the only community that has the max-
imum external pull for node u. As a result, along with
degree, Emax(u) would also decrease by 1. It would not
change Cin(u). Therefore, for permanence loss, we need
to see whether Pl = Perm(u, G) − Perm(u, G �) ≥ 0.
This reduces to

Pl= I (u)

[
1

Emax(u)×deg(u)
− 1

(Emax(u)−1)×(deg(u)−1)

]

= I (u)

[
1−Emax(u)−deg(u)

Emax(u)×deg(u)×(Emax(u)−1)×(deg(u)−1)

]
<0(Emax(u) ≥ 1 and deg(u)≥1 because of edge�u, v�).

Therefore, no permanence loss is possible in the case of
deleting an intercommunity edge.

2) Intracommunity Edge Deletion:
Theorem 4.2: Deleting an intracommunity edge �u, v�

where u, v ∈ C , always results in permanence loss.
Proof: Here, we show that deleting an intracommunity

edge always results in permanence loss. We will only show
the change in permanence for node u (the same applies to
v). Such an edge update would decrease the internal degree
and degree of node u by 1. It would not affect Emax(u) (no
external connections are being changed). We narrow our search
space such that Cin(u) decreases after the deletion of �u, v�.
Therefore, for permanence loss, we need to see whether Pl =
Perm(u, G)− Perm(u, G �) ≥ 0. This reduces to

Pl = 1

Emax(u)

[
I (u)

deg(u)
− I (u)− 1

deg(u)− 1

]

= 1

Emax(u)

[
deg(u)− I (u)

deg(u)× (deg(u)− 1)

]
≥ 0 (as deg(u) ≥ I (u)). (4)

Therefore, deleting an intracommunity edge �u, v� would bring
in permanence loss in terms of nodes u and v.

The intracommunity edge deletion would also affect the
permanence measure for nodes that have both u and v as
their neighbors. If so, it would result in a change in their
internal clustering coefficient value with all the other factors
unchanged. For permanence loss due to such a node w,
we need to see whether Pl = Perm(w, G)−Perm(w, G �) ≥ 0.
This reduces to

Pl = (1− C �in(w))− (1− Cin(w)) = Cin(w)− C �in(w)

where C �in(w) represents the updated internal clustering coef-
ficient of w. In the above equation, Pl > 0 since Cin(w) >
C �in(w). For node w, the number of neighbors is intact, but the
edges between its neighbors get reduced by 1 after �u, v� is
deleted. As a result, the internal clustering coefficient reduces,
again resulting in permanence loss. Therefore, deleting �u, v�
would also bring in permanence loss in terms of their common
neighbors.
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3) Intercommunity Edge Addition:
Theorem 4.3: Adding an intercommunity edge �u, v� where

u ∈ C and v ∈ C �, such that C ∩ C � = φ, always results in
permanence loss. The loss is more if C � is the community that
provides the maximum external pull for node u.

Proof: In this proof, we show that adding an intercommu-
nity edge always causes permanence loss. An intercommunity
edge addition just affects permanence for nodes u and v.
We will only show the change in permanence for node u (same
applies to v). There can be two cases given in the following.

1) Emax(u) Does Not Change After Edge Addition: In this
case, we assume that the maximum external connections
for node u remain the same after adding �u, v�. Adding
�u, v� would have no effect on Cin(u). It would only
increase its degree by 1. Therefore, for permanence
loss, we need to see whether Pl = Perm(u, G) −
Perm(u, G �) ≥ 0. This reduces to

Pl = I (u)

Emax(u)
×

[
1

deg(u)
− 1

deg(u)+ 1

]
> 0. (5)

Therefore, there is a permanence loss in the case of
adding an intercommunity edge such that Emax(u) does
not change after edge addition.

2) Emax(u) Changes After Edge Addition: In this case,
we assume that the addition of edge �u, v� affects the
maximum external connections of node u. This is the
case where C � is the community that has the maximum
external pull for node u. As a result, along with the
degree, Emax(u) would also increase by 1. It would not
change Cin(u). Therefore, for permanence loss, we need
to see whether Pl = Perm(u, G) − Perm(u, G �) ≥ 0.
This reduces to

Pl= I (u)

[
1

Emax(u)×deg(u)
− 1

(Emax(u)+ 1)×(deg(u)+ 1)

]

0= I (u)

[
1+ Emax(u)+deg(u)

Emax(u)×deg(u)× (Emax(u)+ 1)× (deg(u)+ 1)

]
> 0. (6)

Therefore, there is permanence loss in the case of adding an
intercommunity edge such that Emax(u) changes after edge
addition.

Theorem 4.4: The permanence loss is more in case of (6)
(i.e., an edge added to the neighboring community from where
u experiences the maximum external pull) compared to (5).

Proof: Taking permanence loss in (5) and (6), we get

I (u)

[
1+ Emax(u)+ deg(u)

Emax(u)× deg(u)× (Emax(u)+ 1)× (deg(u)+ 1)

]

≥ I (u)

Emax(u)
×

[
1

deg(u)× (deg(u)+ 1)

]
⇒ deg(u) ≥ 0 which is true.

4) Intracommunity Edge Addition:
Theorem 4.5: Adding an intracommunity edge �u, v� where

u, v ∈ C does not always ensure a loss in permanence.
Proof: Here, we show that adding an intracommunity edge

does not always result in permanence loss. We will only show
the change in permanence for node u (the same applies to v).

For this, we consider two parts of permanence separately:
1) ratio of internal–external pull, denoted by Perm(G)1, and
2) cohesiveness of internal neighbors, denoted by Perm(G)2.

Fig. 3. Example to demonstrate that permanence loss in terms of cohesiveness
of internal neighbors of a node u may not always be positive.

1) Impact on the Ratio of Internal–External Pull: In this,
we consider the effect of adding an intracommunity edge
�u, v� on the internal–external pull factor of permanence.
This update increases the internal degree and degree for
node u by 1. It has no effect on the maximum exter-
nal connections Emax(u). Therefore, for permanence
loss, we need to see whether Pl1 = Perm(u, G)1 −
Perm(u, G �)1 ≥ 0. This reduces to

Pl1 = 1

Emax(u)

[
I (u)

deg(u)
− I (u)+ 1

deg(u)+ 1

]

= 1

Emax(u)

[
I (u)− deg(u)

deg(u)× (deg(u)+ 1)

]
≤ 0 (as I (u) ≤ deg(u)).

Therefore, there is no permanence loss with respect to
the internal–external pull (first part of (2)).

2) Impact on Cohesiveness of Internal Neighbors: In this,
we consider the effect of adding an intracommunity
edge �u, v� on the cohesiveness of internal neighbors.
Therefore, for permanence loss, we need to see whether
Pl2 = Perm(u, G)2−Perm(u, G �)2 ≥ 0. This reduces to

Pl2 = (1− C �in(u))− (1− Cin(u)) = Cin(u)− C �in(u)

where C �in(u) represents the updated internal cluster-
ing coefficient of u in G and Pl2 can be positive or
negative depending on how the connections between
internal neighbors of u change after introducing its new
neighbor v. This is shown using a toy example in Fig. 3.
It can be seen that in the first case, Pl2 < 0, whereas in
the second case, Pl2 > 0.

By combining 1) and 2), we conclude that intracommunity
edge addition does not always ensure permanence loss.

D. Proposed Algorithm: NEURAL

Since our objective function is submodular and monotone
with respect to the possible edge updates that affect per-
manence loss positively, we propose NEURAL, a greedy
algorithm that maximizes permanence loss to rewire nodes
within a given budget in order to hide the target community.

NEURAL makes the use of certain edge updates discussed
in Section IV-C to rewire the network structure such that the
CDAs are not able to detect a target community C. Along
with the network, it takes as input β, indicating the budget or
the maximum number of edge updates that are allowed. The
pseudocode of NEURAL is shown in Algorithm 1 (flow dia-
gram in Fig. 1). At every iteration, it considers an edge update,
which contributes toward the maximum loss in permanence
for the network, hence greedily updating the original network.
For an edge addition, we only consider adding intercommunity
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edges following Theorems 4.3 and 4.5 as it has been shown
that adding an intracommunity edge does not guarantee a loss
in permanence in all cases (lines 4–6 of Algorithm 1). In the
case of edge deletion, we only consider deleting intracom-
munity edges following Theorems 4.1 and 4.2 (lines 7–9 of
Algorithm 1). Deleting an intercommunity edge does not result
in permanence loss in any case; hence, it is not a favorable
update. Since NEURAL follows a greedy strategy, for the
addition of all the competing intercommunity edges, the one
which has the highest permanence loss for the network is
considered. The same approach is followed for selecting the
best intracommunity edge for deletion. In the end, a choice
between the best intercommunity edge to be added and the best
intracommunity edge to be deleted is made based on which
one contributes more to network permanence loss (lines 10–13
of Algorithm 1).

Note that for computing the best network update at every
iteration, we only need node information for a subset of all
the nodes present in the network, which reduces the amount
of network information being used.

E. Time Complexity of NEURAL

The time complexity of NEURAL is O(|VC | + |EC |),
where |VC | and |EC | represent the number of nodes and
edges (both intracommunity and intercommunity) in the target
community C, respectively. This is because, in order to search
for edge updates that best contribute toward the permanence
loss for hiding C , we only need to go through the nodes
and edge connections in the target community, as shown in
Section IV-C. Information about the rest of the network is
not required. We explore the running time complexity of
NEURAL further in the Supplementary Material.

Algorithm 1 NEURAL: Network Deception Using
Permanence Loss
Input: (i) Network G, (ii) target community C , (iii) budget β
Output: Updated Network G �
1: Pl,add = 0
2: Pl,del = 0
3: while β > 0 do
4: addu, maxCommu = getBestNodeForAddition(C) (6)
5: addv = getBestExternalNodeForAddition(maxCommu)
6: Pl,add = getEdgeAdditionLoss(addu, addv)
7: intraEdge← getConnectingEdges(C)
8: delu, delv = getBestEdgeForDeletion(intraEdge) (4)
9: Pl,del = getEdgeDeletionLoss(delu, delv, C)

10: if Pl,add ≥ Pl,del and Pl,add > 0 then
11: G← (V, E ∪ {addu, addv})
12: else if Pl,del > 0 then
13: G← (V, E\{delu, delv})
14: end if
15: β = β − 1
16: end while
17: return G

V. EXPERIMENTAL SETUP

In this section, we start by briefly describing the data
sets, baseline methods, community detection methods we

considered for deception, and the evaluation metrics. We then
elaborate on the experimental results and the case studies.

A. Synthetic and Real-World Networks

We conduct experiments on two types of networks as
follows.

1) Synthetic Networks: We use the LFR benchmark [26]
and vary the following parameters to generate synthetic
networks: N is the number of nodes and μ is the ratio
of external connections of a node to degree. The other
parameters are set to default as mentioned in the original
implementation. Unless otherwise stated, we consider
the following setting to generate the default synthetic
network: N = 10 000 and μ = 0.4 (as suggested
in [8]).

2) Real-World Networks: We use seven real-world net-
works: 1) Zachary’s Karate Club (Kar)4; 2) Dolphin
social network (Dol)4; 3) Les Miserables (Lesmis)4;
4) Books about U.S. Politics (Polbook)4; 5) Word adja-
cencies (Adjn)4; (6) U.S. power grid (power)4; and
7) DBLP collaboration network (Dblp).5 Table II sum-
marizes the statistics of the networks.

Note that we do not require the ground-truth community
structure since our primary aim is to deceive a CDA so
that after rewiring, the community affiliation of target nodes
remains unrevealed.

B. Baseline Methods

We compare NEURAL with four baseline methods, which
are given in the following.

1) Random Algorithm: It updates the network by ran-
domly selecting the type of edge update (edge
addition/deletion), along with the end nodes.

2) Nagaraja Algorithm [6]: It updates the network by
adding edges between nodes selected on the basis of
vertex-centrality measures.

3) DICE [2]: It updates the network by randomly
adding intercommunity edges or deleting intracommu-
nity edges.

4) SADDEN [5]: It updates the network by maximizing the
safeness gain in every iteration of edge update based on
greedy optimization.

C. Community Detection Algorithms

We consider six diverse and widely used CDAs: Louvain
(Louv) [27], WalkTrap (Walk) [14], Greedy [28], InfoMap
(Info) [15], Label Propagation (Labprop) [29], and Leading
Eigenvectors (Eig) [30]. Note that none of these algorithms use
permanence as a metric for optimization. Therefore, NEURAL
is agnostic to the underlying mechanism of these algorithms.

D. Evaluation Metrics

Here, we briefly describe the metrics used to evaluate the
community deception methods. ↑ (resp. ↓) indicates higher
(resp. lower) the value of the metric, better the performance.

1) Normalized Mutual Information (NMI) ↓ [31]: To check
how much the deception methods are able to hide a

4http://www-personal.umich.edu/∼ mejn/netdata/
5http://snap.stanford.edu/data/
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particular target community C in the network, we cal-
culate the NMI score between the original community
structure of the network, C S = (C1, C2, . . . , Ck), and
the new community structure obtained from a CDA
on the updated network, C S� = (C �1, C �2, . . . , C �k� ). The
metric ranges from 0 (suggesting no overlap between C S
and C S�) to 1 (suggesting a complete overlap between
C S and C S�).

2) Modified NMI (MNMI) ↓: For large networks, hiding
a target community C may not have a major effect
on the other communities that are not in immediate
contact with C . As a result, to capture how effective
a deception method is in hiding C , we may need to
measure NMI between the community memberships of
nodes in the target communities and their immediate
neighbors before and after the edge updates. We call this
metric MNMI. Its range is the same as that of NMI.

3) Community Splits (CommS) ↑: We propose this metric
to define the number of communities in C S� containing
the nodes of the target community C in the updated
network G �. It ranges from 1 (all nodes in C remain
in one community in C S�) to |C S�| (all nodes in C
get distributed into different communities of C S�). The
higher the value of CommS, the wider would be the split
of the nodes in C , thereby increasing the deception of
the target community

CommS =
∑

C�i∈CS�
h(C �i , C); h(C �i , C) =

{
1 VC ∩ VC�i �= φ

0 VC ∩ VC�i = φ

where VC represents the set of nodes belonging to C
and VCi represents set of nodes belonging to community
Ci ∈ C S�.

4) Community Uniformity (CommU) ↑: We propose
this metric to capture how nodes in the target
community C get distributed among communities in
the new community structure C S�. It is obtained by
calculating the entropy of target community’s nodes
present among the communities in C S� as follows:
CommU =

∑
C�i �CS� −(|VC,C�i |/|VC |) log(|VC,C�i |/|VC |),

where |VC,C�i | represents the number of nodes in C
present in C �i ∈ C S� and |VC | represents the total
number of nodes present in C . It ranges from 0 (when
all nodes of C remain in one community of C S�) to
log |CS �| (when all nodes of C get distributed into
different communities of C S�).

VI. QUANTITATIVE EVALUATION

Here, we present the quantitative analysis of experimental
results on both synthetic and real-world networks.

A. Evaluation on Synthetic Networks

We use the default LFR network, set the budget β as the
fraction of nodes in the target community C , and vary the
fraction from 0.1 to 0.6. The result is averaged over 20 syn-
thetic networks, five randomly selected target communities,
and ten runs for each target community. Fig. 4(a)–(c) shows
that with an increase of β, NEURAL is able to hide C better
(NMI, MNMI scores decrease, and CommS scores increase)
showing a parallel between the allowed budget and its effect
on community deception.

TABLE III

COMPARISON ON THE DEFAULT LFR NETWORK, KEEPING β = 0.3|VC |,
WHERE VC IS THE SIZE OF THE TARGET COMMUNITY

Fig. 4. NMI, MNMI, and CommS on the default synthetic network by varying
(a)–(c) β and (d)–(f) μ, keeping β = 0.3|Vc |, where |VC | is the number of
nodes in the target community.

We further conduct experiments by varying the parameter μ
of LFR network from 0.1 to 0.9. Fig. 4(d)–(f) shows that
with an increase in μ, the nodes in C are concealed more by
NEURAL (NMI, MNMI scores decrease, and CommS scores
increase). The above observation matches the expectation that
it would be easier to hide a target community, which has more
sparse intracommunity connections than the intercommunity
connections.

Table III shows that NEURAL delivers comparable (and
sometimes better) accuracy on the default synthetic network.

B. Evaluation on Real-World Networks

In case of experiments on real-world networks, we fix β
to 30% of the size of the target community C (i.e., β =
0.3|VC |). The results reported here are obtained by averaging
the performance considering each of the communities as
target community at a time and over ten runs for each target
community.

For a compact visualization, we rank five competing com-
munity deception methods as follows; for each evaluation
metric and each CDA, we normalize their scores (using
min–max normalization) so that the best performing method
gets score 1. Now, if a competing method outperforms others
by deceiving all the six CDAs with respect to that evaluation
metric, it will secure a composite score of 6.

Fig. 5(a)–(d) shows the composite performance across all
the evaluation metrics. Fig. 5(e) shows the composite perfor-
mance of individual competing methods averaged over all the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2023 at 04:03:22 UTC from IEEE Xplore.  Restrictions apply. 



806 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

Fig. 5. (Color online) Composite performance of the five competing community deception methods based on (a) NMI, (b) MNMI, (c) CommS, and
(d) CommU. Bars in each group (under each data set) are ordered as follows: 1) Random; 2) Nagaraja; 3) DICE; 4) SADDEN; and 5) NEURAL [as shown
in (c)]. (e) Composite performance of each competing method based on every evaluation metric averaged over all the data sets.

data sets. We observe that NEURAL outperforms others with
a significant margin—NEURAL achieves a composite score
of 5.53 (averaged over all the evaluation metrics and data sets),
outperforming Random, Nagaraja, DICE, and SADDEN by
376.72%, 286.71%, 128.51%, and 26.54%, respectively (see
the Supplementary Material for the raw accuracy scores over
all the data sets). Note that SADDEN turns out to be highly
competitive, sometimes showing marginal improvement over
NEURAL. However, in general, NEURAL is better than others
[see Fig. 5(e)]. We also consider hiding individual target nodes
instead of communities (refer to the Supplementary Material
for the same).

C. Nonuniform Budget for Edge Updates

Until now, we have reported the results with a unified
budget β for all the edge update operations. In this section,
we extend NEURAL with nonuniform budget in which sepa-
rate budget constraints are applied to the two types of allowed
edge updates (as elaborated in Section IV-D): 1) βD for
intracommunity edge deletion and 2) βA for intercommunity
edge addition. Such an analysis could be useful in situations
in which the costs incurred while deleting an intracommu-
nity edge and adding an intercommunity edge are different.
We perform experiments under two different settings of βD

and βA: 1) βD = 0.3β and βA = 0.7β and 2) βD = 0.3β
and βA = 0.7β (we fix β as default, i.e., 30% of the size of
the target community C). Tables IV and V show raw accuracy
values (by averaging over all the communities) for NEURAL
and SADDEN (the best baseline, extending it in a similar
manner) on Karate real-world network (see the Supplementary
Material for others) for the two settings mentioned earlier.
We observe that NEURAL outperforms SADDEN in most
cases.

VII. QUALITATIVE EVALUATION

To interpret the rewiring suggested by NEURAL and
SADDEN (top two methods), we further take three real-world
attributed networks. Unless otherwise stated, we only consider
deletion of edges (as addition of a new edge does not make any

TABLE IV

ACCURACY OF TWO COMPETING COMMUNITY DECEPTION METHODS:
1) S: SADDEN (BEST BASELINE) AND 2) N: NEURAL
OVER KARATE, SUCH THAT βD = 0.3β AND βA = 0.7β

TABLE V

ACCURACY OF TWO COMPETING COMMUNITY DECEPTION METHODS:
1) S: SADDEN (BEST BASELINE) AND 2) N: NEURAL
OVER KARATE, SUCH THAT βD = 0.7β AND βA = 0.3β

sense for these networks). The Louvain algorithm is used for
community detection, and the largest community is considered
as the target community.

A. Citation Network

We consider 6320 papers published in Physical Review
Journal as nodes and 10 000 citation interactions (we ignore
directionality) among them as edges.6 After hiding the target
community (largest community), we observe that NEURAL
tends to pick up those citation interactions (or edges) whose
age (defined by the difference between the publication years
of citing and cited papers) is relatively high (we believe that
these edges have much more important in terms of keeping

6https://journals.aps.org/datasets
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Fig. 6. (a) Age and (b) similarity score distribution of edges selected by
NEURAL and SADDEN from citation and terrorist networks, respectively.

the identity of the target community intact, being connected to
papers (or nodes) published earlier than most in the literature).
NEURAL performs better than SADDEN in terms of updating
more edges of such kind [see Fig. 6(a)].

We further measure the correlation (Spearman’s ρ and
Kendall’s τ ) of 138 edges selected and ranked by NEURAL
and those ranked by their age (ground truth) (similar corre-
lation for 138 edges returned by SADDEN). Table VI shows
that NEURAL outperforms SADDEN. Moreover, NEURAL
returns the top three edges based on their age present in
the target community within top 20 of the rank list, whereas
SADDEN is unable to return a single such edge within the
138 edges returned.

B. Terrorist Network

We use the Global Terrorism Database7 to create a net-
work of terrorist group associations. This data set consists
of 191 465 terrorist events around the world between 1970
and 2018. In order to create the network, we compute the
similarity between two terrorist groups based on their activ-
ities. To quantify the similarity between two groups, we use
five attributes: 1) severity of the attack (number of casualties);
2) attacking strategy used in majority events; (3) type of
weapon used in majority events; 4) peak year of attacks; and
5) the target type in majority events. Thus, two terrorist groups
are associated with a link if the similarity score is greater than
or equal to 2.5 (out of 5). This gives rise to a network having
3616 nodes as terrorist groups and 22 141 unweighted edges
as association links among these groups.

After hiding the target community (largest community),
we observe that NEURAL first picks up those edges that have
higher similarity scores, removing a link between two highly
similar terrorist groups. NEURAL performs better compared
to SADDEN in terms of providing more edges with high
similarity scores [see Fig. 6(b)]. We further measure the
rank correlation between 93 edges returned and ranked by
NEURAL with those ranked by their similarity scores (ground
truth) (similarly for 93 edges returned by SADDEN). Table VI
shows that NEURAL once again outperforms SADDEN in
terms of returning edges whose similarity score is high.

C. Breast Cancer Network

Breast cancer8 is considered a leading cause of morbidity
and mortality among women worldwide. Above 12% of the
women in the United States are diagnosed with breast cancer
during their lifetime [32]. Alteration of gene regulation has
been widely studied in this context [33], with a special focus
on dynamic changes in gene co-expression modules. Under

7https://www.start.umd.edu/gtd/
8This analysis was conducted by two professional biologists.

TABLE VI

RANK CORRELATION FOR CITATION AND TERRORIST NETWORKS,
AND ACCURACY FOR BREAST CANCER NETWORK

the Cancer Genome Atlas (TCGA) program, a community-
scale effort has been directed toward multiomic molecular
profiling of breast tumors in hundreds of patients [34]. We use
Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) normalized gene expression data from TCGA
to understand whether disguising community affiliation plays
a role in the pathogenesis of critical diseases such as cancers.
To achieve this, we construct a control and a cancer-specific
co-expression network based on transcriptomic profiles
of 1097 normal (as controls) and 113 tumor samples obtained
from the TCGA repository. Both networks spanned the same
set of 1000 genes (1000 nodes). Two nodes are connected
by an edge when Pearson’s correlation coefficient computed
across the entire spectrum of control/tumor samples qualifies
a cutoff value of 0.6 (12 161 edges). Deleterious mutations
in cancer cause widespread loss-of-function events, which are
often manifested by changes in gene expression levels.

We employ NEURAL and SADDEN to retrieve
co-expressions (edges), whose disappearance fosters
community disintegration. NEURAL and SADDEN could
pin-point 15 and 10 rewirings in the form of edge deletion,
respectively, which could be cross-validated with respect
to the cancer-specific network. Quite strikingly, 5 out of
the 15 correctly predicted deletions by NEURAL, harbors
BMP2 inducible kinase (BPMP2K) as one of the nodes.
We find definitive studies implicating this molecule in breast
cancer [35]. We fail to find any literature support for the
novel gene Z97832.2 that was relatively enriched (three
out of ten rewirings) among SADDEN predicted rewirings.
We also measure how accurate NEURAL and SADDEN are
to predict the ground-truth edges with respect to the cancer-
specific network. Table VI shows that NEURAL outperforms
SADDEN on four evaluation measures. To this end,
we conclude that NEURAL-led investigation of genome-scale
molecular networks holds significant promise in understanding
genetic diseases such as cancers.

VIII. CONCLUSION

This article addressed the problem of community
deception—outwitting CDAs from discovering the community
affiliation of nodes in a target community. Our major
contributions are as follows: 1) we formalized the problem
and called it HSC; 2) we proposed a novel objective function
(permanence loss), which has been analyzed theoretically;
3) we proposed NEURAL, a novel greedy strategy to
optimize the permanence loss; 4) NEURAL turned out to be
more efficient than the baselines; and 5) NEURAL unfolded
different metainformation of edges, which would otherwise
not have been possible to explain just by analyzing the
network structure. In particular, NEURAL showed promise
in the analysis of genome-scale molecular networks.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2023 at 04:03:22 UTC from IEEE Xplore.  Restrictions apply. 



808 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

REFERENCES

[1] S. Fortunato and D. Hric, “Community detection in networks: A user
guide,” Phys. Rep., vol. 659, pp. 1–44, Nov. 2016.

[2] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, “Hiding
individuals and communities in a social network,” Nature Hum. Behav.,
vol. 2, no. 2, pp. 139–147, Feb. 2018.

[3] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel, “You are
who you know: Inferring user profiles in online social networks,” in
Proc. 3rd ACM Int. Conf. Web Search Data Mining (WSDM), 2010,
pp. 251–260.

[4] T. Ji, C. Luo, Y. Guo, Q. Wang, L. Yu, and P. Li, “Community detection
in online social networks: A differentially private and parsimonious
approach,” IEEE Trans. Comput. Social Syst., vol. 7, no. 1, pp. 151–163,
Feb. 2020.

[5] V. Fionda and G. Pirro, “Community deception or: How to stop fearing
community detection algorithms,” IEEE Trans. Knowl. Data Eng.,
vol. 30, no. 4, pp. 660–673, Apr. 2018.

[6] S. Nagaraja, “The impact of unlinkability on adversarial community
detection: Effects and countermeasures,” in Proc. PETS, Jul. 2010,
pp. 253–272.

[7] Y. Liu, J. Liu, Z. Zhang, L. Zhu, and A. Li, “REM: From struc-
tural entropy to community structure deception,” in Proc. NIPS, 2019,
pp. 12918–12928.

[8] T. Chakraborty, S. Srinivasan, N. Ganguly, A. Mukherjee, and
S. Bhowmick, “On the permanence of vertices in network communities,”
in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2014, pp. 1396–1405.

[9] K. Berahmand, A. Bouyer, and M. Vasighi, “Community detection
in complex networks by detecting and expanding core nodes through
extended local similarity of nodes,” IEEE Trans. Comput. Social Syst.,
vol. 5, no. 4, pp. 1021–1033, Dec. 2018.

[10] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 69, no. 2, 2004, Art. no. 026113.

[11] M. Chen, K. Kuzmin, and B. K. Szymanski, “Community detection
via maximization of modularity and its variants,” IEEE Trans. Comput.
Social Syst., vol. 1, no. 1, pp. 46–65, Mar. 2014.

[12] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Math., vol. 6, no. 1, pp. 29–123,
Jan. 2009, doi: 10.1080/15427951.2009.10129177.

[13] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proc. 19th Int. Conf.
World Wide Web (WWW), 2010, pp. 631–640.

[14] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” in Computer and Information Sciences, P. Yolum,
T. Güngör, F. Gürgen, and C. Özturan, Eds. Berlin, Germany: Springer,
2005, pp. 284–293.

[15] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proc. Nat. Acad. Sci. USA,
vol. 105, no. 4, pp. 1118–1123, Jan. 2008.

[16] M. Rosvall and C. T. Bergstrom, “An information-theoretic framework
for resolving community structure in complex networks,” Proc. Nat.
Acad. Sci. USA, vol. 104, no. 18, pp. 7327–7331, May 2007.

[17] L. Donetti and M. A. Muñoz, “Detecting network communities:
A new systematic and efficient algorithm,” J. Stat. Mech., Theory Exp.,
vol. 2004, no. 10, Oct. 2004, Art. no. P10012.

[18] A. Capocci, V. D. P. Servedio, G. Caldarelli, and F. Colaiori, “Detecting
communities in large networks,” Phys. A, Stat. Mech. Appl., vol. 352,
nos. 2–4, pp. 669–676, Jul. 2005.

[19] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, Jun. 2005.

[20] N. Alduaiji, A. Datta, and J. Li, “Influence propagation model for clique-
based community detection in social networks,” IEEE Trans. Comput.
Social Syst., vol. 5, no. 2, pp. 563–575, Jun. 2018.

[21] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3–5, pp. 75–174, Feb. 2010.

[22] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly, “Metrics
for community analysis: A survey,” ACM Compt. Surv., vol. 50, no. 4,
pp. 1–37, 2017.

[23] T. Chakraborty, S. Srinivasan, N. Ganguly, A. Mukherjee, and
S. Bhowmick, “Permanence and community structure in complex net-
works,” ACM Trans. Knowl. Discovery Data, vol. 11, no. 2, pp. 1–34,
Dec. 2016.

[24] M. E. J. Newman, “Modularity and community structure in net-
works,” Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, pp. 8577–8582,
Jun. 2006.

[25] S. Muff, F. Rao, and A. Caflisch, “Local modularity measure for
network clusterizations,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 72, no. 5, Nov. 2005, Art. no. 056107.

[26] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs
for testing community detection algorithms,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 78, no. 4, Oct. 2008,
Art. no. 046110.

[27] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., Theory
Exp., vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

[28] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community struc-
ture in very large networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, no. 6, Dec. 2004, Art. no. 066111.

[29] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 76, no. 3,
Sep. 2007, Art. no. 036106.

[30] M. E. J. Newman, “Finding community structure in networks using
the eigenvectors of matrices,” Phys. Rev. E, Stat. Phys. Plas-
mas Fluids Relat. Interdiscip. Top., vol. 74, no. 3, Sep. 2006,
Art. no. 036104.

[31] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas, “Comparing com-
munity structure identification,” J. Stat. Mech., Theory Exp., vol. 2005,
no. 9, Sep. 2005, Art. no. P09008.

[32] A. G. Waks and E. P. Winer, “Breast cancer treatment: A review,” Jama,
vol. 321, no. 3, pp. 288–300, 2019.

[33] D. Sengupta and S. Bandyopadhyay, “Topological patterns in microrna–
gene regulatory network: Studies in colorectal and breast cancer,” Mol.
Biosyst., vol. 9, no. 6, pp. 1360–1371, 2013.

[34] C. G. A. Network et al., “Comprehensive molecular portraits of human
breast tumours,” Nature, vol. 490, no. 7418, p. 61, 2012.

[35] S. Buraschi et al., “Decorin protein core affects the global gene
expression profile of the tumor microenvironment in a triple-negative
orthotopic breast carcinoma xenograft model,” PLoS ONE, vol. 7, no. 9,
Sep. 2012, Art. no. e45559.

Shravika Mittal is currently pursuing the bachelor’s
degree in computer science and engineering with
the Indraprastha Institute of Information Technology
Delhi, New Delhi, India.

Her research interests include social network
analysis, network science, and natural language
processing.

Ms. Mittal has received the Dean’s list for Excel-
lence in Academics, and Innovation in Research and
Development.

Debarka Sengupta received the Ph.D. degree from
Jadavpur University, Kolkata, India, in 2013.

Before joining the Indraprastha Institute of
Information Technology Delhi, New Delhi, India,
he worked as an INSPIRE Faculty at the Indian Sta-
tistical Institute, Kolkata. He consulted and advised
a number of technology and service-based firms,
including IPsoft, Datanomers, CoreCompete, and
Applied Research Works on various data science and
business analytics projects.

Dr. Sengupta has twice been nominated for the
prestigious INSPIRE Faculty Award in 2014 and 2016.

Tanmoy Chakraborty (Member, IEEE) is currently
an Assistant Professor and a Ramanujan Fellow with
the Department of Computer Science and Engineer-
ing, Indraprastha Institute of Information Technol-
ogy Delhi, New Delhi, India, where he leads a
research group, called LCS2. His primary research
interests include social network analysis, data min-
ing, and natural language processing.

Prof. Chakraborty has received several awards,
including the Google Indian Faculty Award,
the Early Career Research Award, and the DAAD

Faculty award. More details at http://faculty.iiitd.ac.in/ tanmoy/.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2023 at 04:03:22 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1080/15427951.2009.10129177


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


